Level 5, PDP House

235 Broadway, Newmarket, Auckland 1023 PO Box 9528, Auckland 1149, New Zealand

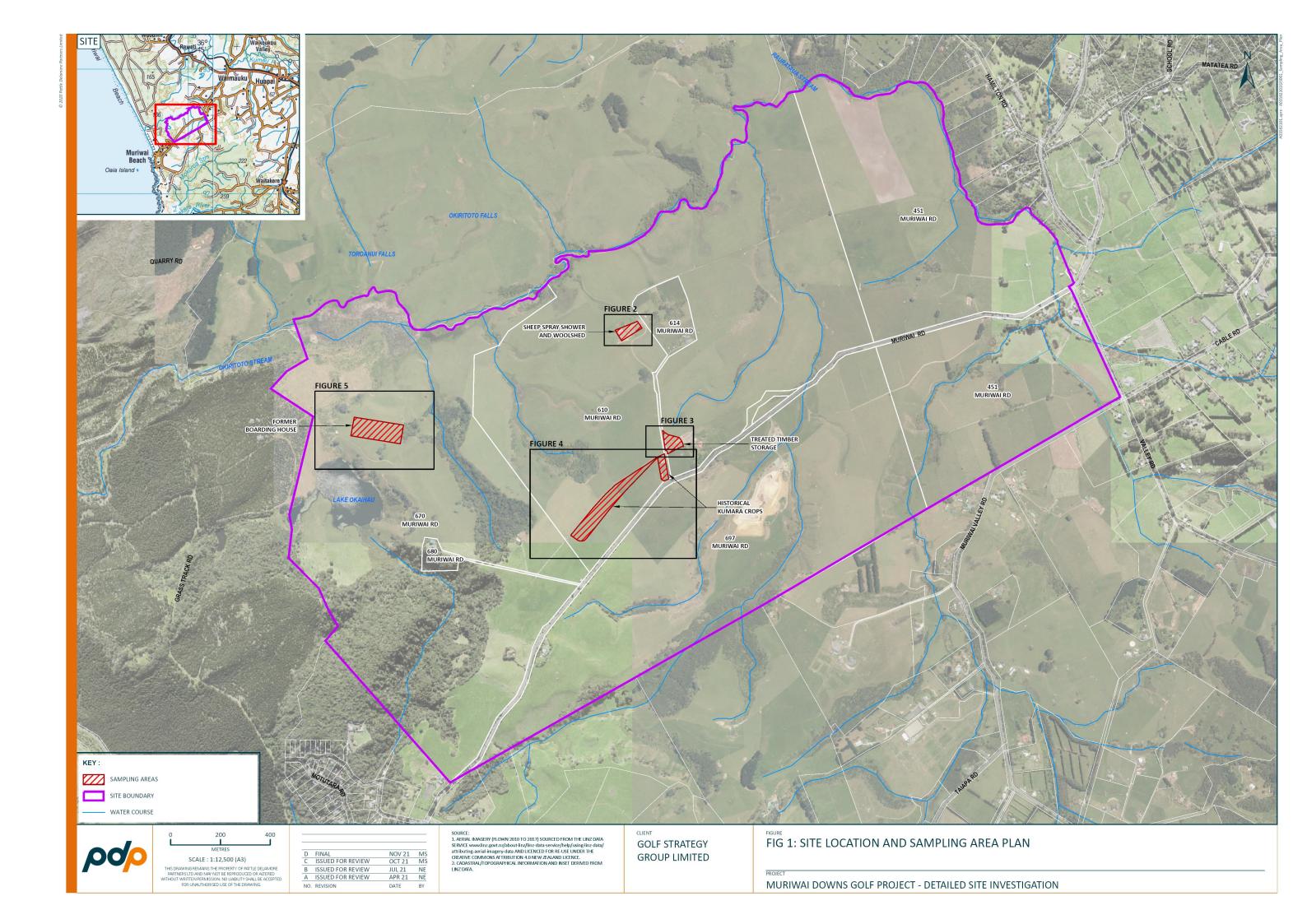
Office +64 9 523 6900 Web www.pdp.co.nz Auckland Tauranga Hamilton Wellington Christchurch Invercargill

26 November 2021

David Moore Director Golf Strategy Group Limited 60 Clearwater Avenue **CHRISTCHURCH 8051**

Dear David,

MURIWAI DOWNS GOLF PROJECT: DETAILED SITE INVESTIGATION


Introduction and Background

Pattle Delamore Partners Limited (PDP) has been engaged by Golf Strategy Group Limited (GSG) to undertake a Detailed Site Investigation (DSI) of the properties located at 451, 610, 614, 670, 680 and 697 Muriwai Road, Waimauku, otherwise known as Muriwai Downs ('the site'; Figure 1).

This DSI builds upon the Updated Preliminary Site Investigation (PSI) report completed by PDP in 2021, which identified a number of potential areas/activities at discrete locations across the site categorised under the Hazardous Activity and Industry List (HAIL)¹ (PDP, 2021a). These included:

- A Historical Kumara Crops area Potential impacts from various contaminants (including persistent organic pesticides) from historical horticultural activities (kumara crops) in the centre of the site (current paddocks between the workshop area and the "Kumara Shed");
- A Sheep Spray Shower & Woolshed area Potential impacts from various contaminants (including persistent organic pollutants) from the sheep spray shower (with areas of hard seal), holding/draining pens and exit races located near the woolshed, and the potential historical storage of these chemicals in the woolshed itself;
- Potential impacts from various contaminants from storage of timber (including a long-term Treated Timber Storage area in the paddocks to the west of the workshop as well as the timber stored within a building in the workshop area and under the woolshed);
- Localised lead (and potentially arsenic) impacts from painted surfaces on current/historical houses/structures (including a Former Boarding House area) constructed prior to the mid-1970s;

¹ The Hazardous Activities and Industries List (HAIL) is a compilation of activities and industries that are considered likely to cause land contamination resulting from hazardous substance use, storage or disposal. The HAIL is intended to identify most situations in New Zealand where hazardous substances could cause, and in many cases have caused, land contamination.

- Asbestos/asbestos containing material (ACM) impacts to soils from current/historical building materials that are observed to be in a deteriorated condition or could have been potentially removed (including from the Former Boarding House area) using inappropriate practises (and not to current standards);
- Potential hydrocarbon impacts from bulk storage of diesel and petrol in un-bunded aboveground storage tanks (ASTs) in the workshop area (including a recent [as of December 2020] spill from the diesel AST) and from fuel drums stored adjacent to the ASTs;
- Potential hydrocarbon impacts from the storage of old fuel drums in the workshop;
- Potential heavy metal and hydrocarbon impacts from the storage of fuel/chemicals and burning of refuse in (and with respect to the refuse; adjacent to) the main workshop building; and
- Potential impacts from various contaminants from storage of chemicals in the hazardous chemicals storage shed located in the workshop area.

The PSI report concluded that the Resource Management (National Environmental Standard for Assessing and Managing Contaminants in Soil to Protect Human Health) Regulations 2011 ('the NESCS') apply to discrete, localised pieces of land where these potential contamination sources have been identified, and would be triggered by the proposed activities anticipated to be undertaken in the future, which are expected to include change of land use (from rural to a combination of residential, rural residential, commercial and recreational) and soil disturbance. A DSI was recommended to be undertaken on the identified potential contamination sources to determine the nature and extent of impacts to ground as a result of these current/historical activities.

This DSI has been carried out to determine the nature and extent of impacts of the contaminants of potential concern (COPC) to ground (that is to be disturbed by the proposed development as outlined in Section 3.0) as a result of the current or historical activities that have or have potentially been undertaken prior to completing any bulk soil disturbance activities on the site.

This DSI has also been undertaken to support the consenting of the proposed Muriwai Downs Golf Project ('the project'). PDP understand GSG has been appointed by The Bears Home Project Management Limited ('the Applicant') to manage the project.

This DSI has been directed and reviewed by Suitably Qualified and Experienced Practitioners (SQEPs) with respect to contaminated land and has been undertaken in accordance with the Ministry for the Environment's (MfE's) Contaminated Land Management Guidelines (CLMG) No.1 – Reporting on Contaminated Sites in New Zealand (MfE, 2021a), and the principles contained in CLMG No.5 – Site Investigation and Analysis of Soils (MfE, 2021b). A certifying statement to this effect is provided in Appendix A.

This report provides the findings of the investigation.

2.0 Objectives and Scope of Work

2.1 Objectives

The key objectives of this DSI are to:

Assess the likelihood of human health and environmental risk associated with the proposed soil disturbance and change of land use through soil sampling and comparison of analytical results against relevant guidelines/criteria; and

Assess the requirements for potential contaminated land consents in relation to the NESCS and the Auckland Unitary Plan: Operative in Part (AUP:OP) (Auckland Council (AC), 2021) contaminated land rules.

2.2 Scope of Work

In order to meet the project objectives, the following scope of work, as detailed in PDP's Sampling and Analysis Plan (SAP; 2021b), was undertaken:

- Soil sampling across four discrete areas within the site with identified potential or known contamination/HAIL sources² (as shown in Figure 1) that are proposed to be disturbed/developed (as described in Section 3.0).
- : Laboratory analysis of collected soil samples for key COPC based on recorded site use, including:
 - Heavy metals (arsenic, cadmium, chromium, copper, lead, nickel and zinc).
 - Organochlorine pesticide (OCPs).
 - Polycyclic aromatic hydrocarbon (PAHs).
 - Pentachlorophenol (PCP).
 - Tributyltin (TBT).
 - Presence/absence asbestos in soil.
- Assessment of the analytical sample results against the relevant soil contaminant standards (SCSs) and environmental guideline values (EGVs) from applicable guideline documents.
- Provision of this report, including updating the conceptual site model (CSM) for the contaminant sources identified and providing an assessment of the applicable NESCS and contaminated land rules of the AUP:OP.

3.0 Proposed Development

PDP understands the project intends to establish a golf resort facility with short-stay accommodation, and associated clubhouse and built facilities (as shown in the Master Site Layout Plan provided in Appendix B). The project is described as the construction, operation and maintenance of:

- : A 19-hole golf course with warm-up fairway and short-game practice area;
- A clubhouse;
- A sports academy (including an academy building, driving range, practice green, 9-hole short course, and indoor and outdoor tennis facilities);
- : A golf and property maintenance complex;
- : A luxury lodge;
- : Groundwater and surface water abstraction facilities;
- Off-stream water storage reservoir;
- : Significant ecological restoration and enhancement works; and
- : Various supporting infrastructure associated with the above.

² Including the areas where the historical kumara crops, treated timber storage, sheep spray shower and woolshed, and former boarding house were/are located.

PDP understands that the golf course and associated facilities will operate in tandem with the site's current use as a farm.

4.0 Site Description

4.1 Site Identification

The site is located in Muriwai, with rural/residential properties, farmland and Muriwai Valley Road forming the site boundary to the south; Okiritoto Stream and farmland to the north; rural/residential properties including horticultural activities along Muriwai and Hamilton Roads to the east; and bush/forestry land to the west (Figure 1). Muriwai Road runs through the middle of the site.

The collection of properties that make up the site comprise multiple addresses and legal descriptions as listed in Table 1.

Table 1: Muriwai Dov	wns Property Information	
Site Address	Description	Titles
451 Muriwai Road ¹	Lot 3 DP 196479, Lot 4 DP 187060, Sec 3 SO 41485	NA117B/171, NA125C/443
610 Muriwai Road	Lot 2 DP 196478	NA125C/442
614 Muriwai Road	Lot 1 DP 196478	NA125C/441
670 Muriwai Road	Lot 1 DP 187057	NA117B/168
	Lot 1 DP 191137 and Section 1 SO Plan 69201	NA134D/135
680 Muriwai Road	Lot 1 DP 163736	NA98D
697 Muriwai Road ²	Lot 5 DP 187061	NA117B/172

Notes:

- 1. This property includes land to the north and south of Muriwai Road. Development is only earmarked for the part of this address that lies to the north of Muriwai Road and immediately adjacent to the south of Muriwai Road.
- 2. Only the northeastern corner of this property is earmarked for development, making up part of the proposed off-stream water storage reservoir.

The site area is approximately 500 hectares (5,000,000 m²) in size. The site is currently largely pastoral land with accompanying dwellings and structures including five residential houses with associated garages and sheds, a workshop area containing multiple structures, a woolshed and a small number of barns and ancillary farm sheds. There is a small quarry in the middle of the 697 Muriwai Road property, which is excluded from the project and therefore has not been assessed as part of this DSI.

The surrounding land use is largely rural residential. Bush/forestry land exists to the west of the site. A full description of the site and surrounds is provided in the site's Updated PSI report (PDP, 2021a).

4.2 Geology and Hydrogeology

The Geological Map of Auckland (Edbrooke, 2001) indicates that the site area is underlain by multiple geological units. The majority of the site is underlain by sandstone of the Awhitu Group, which is characterised by moderately to poorly consolidated cross-bedded, plane-parallel and ripple-laminated sandstone with paleosols, lignite and carbonaceous mudstone and sandstone. The eastern section of the site is underlain by alluvial and colluvial deposits of sand, silt, mud and clay with local gravel and peat beds while the western/northwestern section of the site is underlain by mobile dunes of loose sand in active, unvegetated or sparsely vegetated dune fields and deflation zones. In the central-east of the site is an area underlain by the Waiatarua Formation, which is characterised by basalt flows, pillow lavas,

hyaloclastites and associated intrusives with minor basic andesite. Lastly, an area within the Okiritoto Stream in the northern section of the site is underlain by the Nihotupu Formation, which is characterised by submarine volcaniclastic grit, sandstone and siltstone. All potential HAIL areas identified across the site are underlain by sediments of the Awhitu Group.

The site has a topographic high in the southwestern corner of the site (~130 m RL) and slopes away to a topographic low of ~10 m RL at the Okiritoto Stream in the northwestern corner of the site. The remainder of the site is largely undulating with a slope towards either the Raurataua Stream in the east, Okiritoto Stream in the north or Lake Okaihau in the west. The surrounding land to the north and east is steep and hilly, and generally elevated compared to the adjacent land on the site. Lake Okaihau is in the western section of the site at around 32 m RL.

Borehole records from AC for the site and surrounding area indicates a measured groundwater level of 100 m below ground level at 75 Motutara Road (located to the southwest of the site). Groundwater in the east of the site is expected to generally flow in an east-northeast direction towards Raurataua Stream while over the rest of the site groundwater is expected to flow generally in a north/northwest direction towards Okiritoto Stream and Lake Okaihau.

Local geology, as identified during this investigation, generally consists of a layer of silty/sandy topsoil to between approximately 0.1 and 0.4 m below ground level (bgl). Below this is a layer of clayey silt/silty clay to between 1 and 1.3 m bgl. Beneath this layer is generally sand/silty sand, consistent with the published geology (i.e. the Awhitu Group). Groundwater was not encountered in any of the hand augered locations down to the target depths but suspected perched groundwater was encountered at two locations within the Sheep Spray Shower & Woolshed area at 0.8 m bgl. Selected bore logs representative of the sampling areas are provided in Appendix C.

5.0 Site Investigation

The number of sample locations, depth ranges for sampling, and the COPC that the samples were analysed for were informed by the Updated PSI report for the site (PDP, 2021a), with reference to the proposed development as outlined in Section 3.0. The SAP (PDP, 2021b) was prepared, which detailed the site investigation activities and rationale. The SAP is included for reference purposes within this report in Appendix D. Following the scope of work in the SAP, soil samples were collected from 73 locations across the following sampling areas³ on 6, 10 and 11 August 2021:

- : Sheep Spray Shower & Woolshed area (as shown in Figure 2).
- : Treated Timber Storage area (as shown in Figure 3).
- : Historical Kumara Crops area (as shown in Figure 4).
- Former Boarding House area (as shown in Figure 5).

³ Based on the total area of the site to be disturbed/developed (as part of the golf course) that intersects with the discrete areas across the site with potential or known contamination/HAIL sources. The other discrete areas across the site with identified potential or known contamination/HAIL sources (including the timber stored within a building in the workshop area and under the woolshed; other current/historical houses/structures constructed prior to the mid-1970s; bulk storage of diesel and petrol in un-bunded ASTs, the storage of old fuel drums and fuel/chemicals, and burning of refuse in the workshop area; and the storage of chemicals in the hazardous chemicals storage shed located in the workshop area) were not assessed as part of this DSI as no soil disturbance and/or land use change has been proposed at those locations.

5.1 Soil Sampling Methodology

Soil sampling was undertaken in accordance with the principles contained in *CLMG No.5 – Site Investigation and Analysis of Soils* (MfE, 2021b).

The investigation comprised:

- Collecting soil samples using a stainless-steel spade from the surface (~0.1 m bgl) and near surface
 (~0.2 0.4 m bgl) across all four sampling areas; and
- Advancing bore holes with a stainless-steel hand auger to 1 m bgl at all 11 sampling locations in the Sheep Spray Shower & Woolshed area, as well as to 2 m bgl at one location (KC_SS06) in the Historical Kumara Crops area, and to 3 m bgl at one location (BH_SS13) in the Former Boarding House area.

Fresh nitrile gloves were worn at each new sample location. Samples were immediately placed into laboratory supplied glass and plastic jars, and chilled cool storage bins during the site works and subsequent transport to the analysing laboratory. At the completion of the site works, sample bins were sent directly to an IANZ accredited laboratory (Hill Laboratories Limited) in Hamilton and Christchurch under standard PDP Chain of Custody (CoC) procedures for the analyses indicated in Table 1 of the SAP⁴.

6.0 Applicable Guidelines and Criteria

The following assessment guidelines and criteria have been selected to enable a Tier 1 risk assessment of the soil sample results. These guideline values have been selected in accordance with the guidance provided in the MfE's (2011a) CLMG No. 2 – Hierarchy and Application in New Zealand of Environmental Guideline Values.

6.1 Background Concentrations

According to Regulation 5(9) of the NESCS, if a DSI can demonstrate that contaminants at a known/potential HAIL area are at/below published background concentrations, then the NESCS regulations do not apply. To assess heavy metal results, Auckland Council Background Concentrations for heavy metals are taken from the Non-volcanic Range Soils of Table E30.6.1.4.2 in the AUP:OP. Concentrations of hydrocarbon compounds (including PAHs) may be present naturally due to natural bush fires, volcanic eruptions and decaying organic matter but, as these are extremely variable, background data is not presented for these compounds. Relevant background concentrations are summarised in Table 2 below in Section 7.2.

Note that for anthropogenic contaminants such as OCPs, PCP or TBT, there are no concentrations above the laboratory limit of reporting (LOR) that can be considered to be 'background'. A detection of these contaminants in a sample equates to an exceedance of background concentrations.

⁴ It should be noted that PDP considers that:

The high potential for variability of analysis results between duplicate soil samples due to the heterogeneity of soils renders the ability to quantify variability as a result of error due to laboratory analysis or error due to field sampling techniques impractical. On this basis, duplicate samples were not obtained; and

On the basis of the likely even distribution of COPC across the Historical Kumara Crops area, the primary soil samples collected from 28 surface locations were combined into seven composite soil samples by the laboratory for analysis.

6.2 Soil Contaminant Standards (NESCS)

The NESCS provides SCSs for seven inorganic substances and five organic compounds (or groups of compounds) (the SCSs are published in the *Methodology for Deriving Standards for Contaminants in Soil to Protect Human Health* (MfE, 2011b), which is incorporated by reference in to the NESCS). SCSs are available for these substances and compounds when present in soil, for five land use scenarios. The contaminants analysed at this site for which SCSs are available are arsenic, cadmium, chromium, copper, lead, DDT, dieldrin and benzo(a)pyrene (equivalent). As the project intends to establish a golf resort (as described in Section 3.0) and the areas of the site to be disturbed/developed as part of the golf course intersect with the discrete areas across the site with identified potential or known contamination/HAIL sources, commercial/industrial and recreational land use scenarios were adopted, which includes the following source-pathway-receptor assumptions:

- The selected commercial/industrial and recreational SCSs respectively assume that intended future land use will be:
 - Commercial site with varying degrees of exposed soil. These SCSs have been used to assess
 the potential risks to outdoor workers carrying out maintenance activities involving soil
 exposure to surface or near-surface soil through gardening and other landscaping activities,
 and occasional shallow excavation for routine underground service maintenance activities.
 This land use has been applied to all of the soil sample results on the basis that no soils are to
 be removed from the site (with reuse of surplus soils anticipated); and
 - Public/private green areas used for active sport and recreation. These SCSs have been used to assess the potential risks to the general public (i.e. golfers) following the proposed development.
- Potential receptors include site maintenance personnel and the general public (i.e. golfers) following the development.
- It has been assumed that the soil pH is 5, and that all lead is present in an inorganic form.

Relevant SCS are summarised in Table 2 below in Section 7.2.

6.3 Other Applicable Human Health Standards

For contaminants of concern that are not priority contaminants, the NESCS references the hierarchy defined in the MfE's *CLMG No.2 – Hierarchy and Application in New Zealand of Environmental Guideline Values* (MfE, 2011b).

In accordance with this hierarchy, the Australian National Environment Protection Council (NEPC) National Environment Protection (Assessment of Site Contamination) Measure (NEPM) *Guidelines on investigation levels for soil and groundwater* (NEPC, 2013) has been used for two heavy metals (nickel and zinc). Health-based investigation levels for 'Recreational C' and 'Commercial/Industrial D' land use have been selected in accordance with the proposed end use of the site and to protect site workers following the development work (and summarised in Table 2 below in Section 7.2). The NEPM describes the health-based investigation levels as being protective of the two selected land use scenarios as follows:

- 'Recreational C' Public open space such as parks, playgrounds, playing fields (e.g. ovals), secondary schools and footpaths. It does not include undeveloped public open space (such as urban bushland and reserves) which should be subject to a site-specific assessment where appropriate.
- 'Commercial/Industrial D' Commercial/industrial such as shops, offices, factories and industrial sites

The Regional Screening Levels for Chemical Contaminants at Superfund Sites (US EPA regions 3, 6 and 9 [as of May 2021]) has been selected for PCP, tin and TBT.

In addition, the MfE's Petroleum Hydrocarbon Guidelines (MfE, 1999) has been used for two PAHs compounds (naphthalene and pyrene). The Tier 1 soil acceptance criteria for Commercial/Industrial use, All Pathways, sand, surface (<1 m bgl) depth have been conservatively selected (as Tier 1 soil acceptance criteria for recreational use have not been derived).

Relevant EGVs are summarised in Table 2 below in Section 7.2.

6.4 Auckland Council Criteria

Rule E30.6.1.4 of the AUP:OP sets out the soil acceptance criteria for the discharge of contaminants to comply with the Permitted Activity (PA) standards. The PA soil acceptance criteria referenced in this report have been selected from Table E30.6.1.4.1 and are summarised in Table 2 below in Section 7.2. Where a contaminant has both an associated background concentration and PA value, the higher of the two values is to be used as the appropriate discharge screening criteria.

7.0 Results

Results from sampling observations and laboratory soil analyses are outlined below.

7.1 Sampling Observations

The following observations were made during the collection of soil samples:

- No visual or olfactory evidence of contamination (including buried refuse and/or fill) was observed in any of the collected soil samples.
- No groundwater was encountered in any of the hand augered locations down to the target depths but suspected perched groundwater was encountered at two locations within the Sheep Spray Shower & Woolshed area in boreholes WS_SS01 and WS_SS02 at 0.8 m bgl.
- No fragments of ACM were encountered in any of the hand augered locations down to the target depths.

7.2 Analytical Results

Laboratory analytical results of the analysed soil samples are summarised in Table 2 below. The CoC documentation and laboratory analytical reports are provided in Appendix E.

7.2.1 Sheep Spray Shower & Woolshed Area

- Soil sample WS_SS04_0.1 (collected from a holding/draining pen) has a reported concentration of arsenic (72 mg/kg) that exceeds the NESCS SCS for commercial/industrial land use (70 mg/kg) and the published background concentrations of non-volcanic soils in the Auckland region (12 mg/kg) but remains below the AUP:OP PA soil acceptance criteria (100 mg/kg). However, the 95% upper confidence limit (UCL) of the arsenic concentration for the 11 analysed surface soil samples from this area has been calculated (as shown in Appendix F) to be 26.7 mg/kg (still above the published background concentration of non-volcanic soils in the Auckland region but below the NESCS SCS for commercial/industrial land use and the AUP:OP PA soil acceptance criteria).
- The concentrations of copper in soil sample WS_SS04_0.1 and arsenic in soil sample WS_SS09_0.1 (collected from adjacent to the sheep spray shower) exceed the published background concentrations of non-volcanic soils in the Auckland region but are below the NESCS SCSs for recreational and commercial/industrial land use, and the AUP:OP PA soil acceptance criteria.

Table 2: Soil Sample Results - Muriwai Downs Golf Project - Recreation and Commercial/Industrial Land Use - Heavy Metals ¹, Organochlorine Pesticides ¹, Polycyclic Aromatic Hydrocarbons ¹, Pentachlorophenol ¹, Tributyltin ¹ and Asbestos ².

Soil Sample ID	WS_SS01_0.1	WS_SS01_0.3	WS_SS02_0.1	WS_SS03_0.1	WS_SS03_0.3	WS_SS04_0.1	Background Ranges of Trace		NESCS SCSs and SGVs ⁵	
Lab Identification Number	2674272.1	2674272.2	2674272.4	2674272.7	2674272.8	2674272.10	Elements in Auckland Soils	AUP OP Permitted Activity Criteria		
Sample Date	6/08/2021	6/08/2021	6/08/2021	6/08/2021	6/08/2021	6/08/2021		4		
Sample Depth (mbgl)	0.1	0.3	0.1	0.1	0.3	0.1	Non Volcanic ³	Non Volcanic ³	Recreational	Commercial / Industrial
Heavy Metals										•
Arsenic	2	3	7	8	2	72	0.4 - 12	100	80	70
Cadmium	0.11	< 0.10	< 0.10	0.11	< 0.10	0.17	<0.1 - 0.65	7.5	400	1,300
Chromium (total)	8	8	15	10	8	14	2 - 55	400	2700 ⁶	6,300 ⁶
Copper	34	6	18	27	5	100	1 - 45	325	>10,000	>10,000
Lead	7.2	9.4	18.3	32	11.6	32	<5 - 65	250	880 ⁷	3,300 ⁷
Nickel	5	2	5	3	< 2	4	0.9 - 35	105	1,200 8	6,000 ⁸
Zinc	109	33	139	68	20	97	9 - 180	400	30,000 ⁸	400,000 8
Organochlorine Pesticides	_	_	_			_				
Dieldrin	ND	ND	ND	ND	ND	0.043	=	=	70	160
All other OCPs below the laboratory detection limit 9	ND	ND	ND	ND	ND	ND	=	-	-	-

34	Concentration above Auckland Council Background Criteria				
45.1	Concentration above NES SCS/SGV - Recreational				
33	Concentration above NES SCS/SGV - Commercial / Industrial				
ND	Concentration below laboratory limit of detection				
-	No guideline value available / contaminant not measured				

^{1.} Results in mg/kg.

8. Criteria from "Schedule B(1) Guideline on Investigation Levels for Soils and Groundwater National Environment Protection Measure" (NEPM, 2013). Table 1A(1) Health investigation levels for soil contaminants (mg/kg) - Recreation and Commercial/industrial use.

9. Due to all contaminants tested being below the laboratory detection limit, no guideline values are presented for comparison.

Table 2 Continued: Soil Sample Results - Muriwai Downs Golf Project - Recreation and Commercial/Industrial Land Use - Heavy Metals 1, Organochlorine Pesticides 1, Polycyclic Aromatic Hydrocarbons 1, Pentachlorophenol 1, Tributyltin 1 and Asbestos 2.

							1			
Soil Sample ID	WS_SS05_0.1	WS_SS06_0.1	WS_SS07_0.1	WS_SS08_0.1	WS_SS09_0.1	WS_SS09_0.3	Background Ranges of Trace			_
Lab Identification Number	2674272.13	2674272.16	2674272.19	2674272.22	2674272.25	2674272.26	Elements in Auckland Soils	AUP OP Permitted Activity Criteria	NESCS SCSs and SGVs 5	
Sample Date	6/08/2021	6/08/2021	6/08/2021	6/08/2021	6/08/2021	6/08/2021		4		
Sample Depth (mbgl)	0.1	0.1	0.1	0.1	0.1	0.3	Non Volcanic ³		Recreational	Commercial / Industrial
Heavy Metals										<u>-</u>
Arsenic	6	6	9	4	16	5	0.4 - 12	100	80	70
Cadmium	< 0.10	0.17	0.12	< 0.10	0.10	< 0.10	<0.1 - 0.65	7.5	400	1,300
Chromium (total)	7	11	14	9	17	11	2 - 55	400	2,700 ⁶	6,300 ⁶
Copper	28	24	14	7	13	6	1 - 45	325	>10,000	>10,000
Lead	7.0	6.4	6.9	8.7	38	17.5	<5 - 65	250	880 ⁷	3,300 7
Nickel	< 2	6	6	3	5	5	0.9 - 35	105	1,200 8	6,000 ⁸
Zinc	35	69	69	31	100	62	9 - 180	400	30,000 8	400,000 ⁸
Organochlorine Pesticides										
All OCPs below the laboratory detection limit ⁹	ND	ND	ND	ND	ND	ND	-	-	-	-

34	Concentration above Auckland Council Background Criteria
ND	Concentration below laboratory limit of detection
-	No guideline value available / contaminant not measured

^{1.} Results in mg/kg.

^{2.} Results as presence/absence of asbestos fibres in soil.

^{3.} Criteria from Table E30.6.1.4.2 of the Auckland Unitary Plan Operative in Part (Background Concentrations of Inorganic Elements in Soils from the Auckland Region (AC, 2018)) - Non Volcanic soils.

^{4.} Criteria from Table E30.6.1.4.1 of the Auckland Unitary Plan Operative in Part (Permitted activity soil acceptance criteria (AC 2018)).

^{5.} Criteria from Table B2 and B3, Appendix B of the Resource Management (National Environmental Standards for Assessing and Managing Contaminants in Soil to Protect Human Health) Regulations (NESCS, 2011): Commercial/industrial outdoor worker (unpaved) and recreational land-use.

^{6.} Guideline value (from NESCS, 2011) is for Chromium VI.

^{7.} SCS value for lead is inorganic.

Results as presence/absence of asbestos fibres in soil.

^{3.} Criteria from Table E30.6.1.4.2 of the Auckland Unitary Plan Operative in Part (Background Concentrations of Inorganic Elements in Soils from the Auckland Region (AC, 2018)) - Non Volcanic soils.

^{4.} Criteria from Table E30.6.1.4.1 of the Auckland Unitary Plan Operative in Part (Permitted activity soil acceptance criteria (AC 2018)).

^{5.} Criteria from Table B2 and B3, Appendix B of the Resource Management (National Environmental Standards for Assessing and Managing Contaminants in Soil to Protect Human Health) Regulations (NESCS, 2011): Commercial/industrial outdoor worker (unpaved) and recreational land-use.

^{6.} Guideline value (from NESCS, 2011) is for Chromium VI.

^{7.} SCS value for lead is inorganic.

^{8.} Criteria from "Schedule B(1) Guideline on Investigation Levels for Soils and Groundwater National Environment Protection Measure" (NEPM, 2013). Table 1A(1) Health investigation levels for soil contaminants (mg/kg) - Recreation and Commercial/industrial use.

^{9.} Due to all contaminants tested being below the laboratory detection limit, no guideline values are presented for comparison.

Soil Sample ID	WS_SS10_0.1	WS_SS11_0.1	TT_SS01_0.1	TT_SS02_0.1	TT_SS03_0.1	TT_SS04_0.1				
Lab Identification Number	2674272.28	2674272.31	2674272.34	2674272.36	2674272.38	2674272.40	Background Ranges of Trace Elements in Auckland Soils	AUP OP Permitted Activity Criteria	NESCS SCSs and SGVs ⁵	
Sample Date	6/08/2021	6/08/2021	6/08/2021	6/08/2021	6/08/2021	6/08/2021	Elements III / Idexidid Solis	4		
Sample Depth (mbgl)	0.1	0.1	0.1	0.1	0.1	0.1	Non Volcanic ³		Recreational	Commercial / Industrial
Heavy Metals										-
Arsenic	3	6	10	94	10	65	0.4 - 12	100	80	70
Cadmium	< 0.10	0.11	0.35	0.34	0.37	0.37	<0.1 - 0.65	7.5	400	1,300
Chromium (total)	9	10	22	47	21	134	2 - 55	400	2,700 ⁶	6,300 ⁶
Copper	4	14	21	38	22	97	1 - 45	325	>10,000	>10,000
Lead	10.1	11.1	23	14.1	27	19.3	<5 - 65	250	880 ⁷	3,300 7
Nickel	2	4	6	6	7	8	0.9 - 35	105	1,200 8	6,000 ⁸
Zinc	14	43	47	49	57	300	9 - 180	400	30,000 ⁸	400,000 ⁸
Organochlorine Pesticides										
All OCPs below the laboratory detection limit 9	ND	ND	ND	ND	ND	ND	-	-	.=.	=
Polycyclic Aromatic Hydrocarbons	_	_		•			_	•	-	
All PAHs below the laboratory detection limit 9	-	=	ND	ND	ND	ND	-	=	-	-

34	Concentration above Auckland Council Background Criteria
45.1	Concentration above NES SCS/SGV - Recreational
33	Concentration above NES SCS/SGV - Commercial / Industrial
ND	Concentration below laboratory limit of detection
_	No guideline value available / contaminant not measured

^{1.} Results in mg/kg.

7. SCS value for lead is inorganic.

^{2.} Results as presence/absence of asbestos fibres in soil.

3. Criteria from Table E30.6.1.4.2 of the Auckland Unitary Plan Operative in Part (Background Concentrations of Inorganic Elements in Soils from the Auckland Region (AC, 2018)) - Non Volcanic soils.

^{4.} Criteria from Table E30.6.1.4.1 of the Auckland Unitary Plan Operative in Part (Permitted activity soil acceptance criteria (AC 2018)).

5. Criteria from Table B2 and B3, Appendix B of the Resource Management (National Environmental Standards for Assessing and Managing Contaminants in Soil to Protect Human Health) Regulations (NESCS, 2011): Commercial/industrial outdoor worker (unpaved) and recreational land-use.

Guideline value (from NESCS, 2011) is for Chromium VI.

^{8.} Criteria from "Schedule B(1) Guideline on Investigation Levels for Soils and Groundwater National Environment Protection Measure" (NEPM, 2013). Table 14(1) Health investigation levels for soil contaminants (mg/kg) - Recreation and Commercial/industrial use.

^{9.} Due to all contaminants tested being below the laboratory detection limit, no guideline values are presented for comparison.

Soil Sample ID	TT_\$\$05_0.1	TT_SS06_0.1	TT_\$\$07_0.1	TT_SS08_0.1	TT_SS09_0.1	TT_SS10_0.1						
Lab Identification Number	2674272.42	2674272.59	2674272.44	2674272.46	2674272.48	2674272.52	Background Ranges of Trace Elements in Auckland Soils	AUP OP Permitted Activity Criteria	NESCS SCS:	s and SGVs ⁵		
Sample Date	6/08/2021	6/08/2021	6/08/2021	6/08/2021	6/08/2021	6/08/2021		4				
Sample Depth (mbgl)	0.1	0.1	0.1	0.1	0.1	0.1	Non Volcanic ³		Recreational	Commercial / Industrial		
Heavy Metals												
Arsenic	16	7	59	8	23	67	0.4 - 12	100	80	70		
Cadmium	0.31	0.30	0.58	0.21	0.27	0.33	<0.1 - 0.65	7.5	400	1,300		
Chromium (total)	24	18	38	27	23	77	2 - 55	400	2,700 ⁶	6,300 ⁶		
Copper	22	18	59	15	30	78	1 - 45	325	>10,000	>10,000		
Lead	30	25	65	17.1	152	61	<5 - 65	250	880 ⁷	3,300 ⁷		
Nickel	8	6	6	8	5	5	0.9 - 35	105	1,200 8	6,000 ⁸		
Zinc	93	108	169	72	92	144	9 - 180	400	30,000 ⁸	400,000 ⁸		
Organochlorine Pesticides										_		
All OCPs below the laboratory detection limit 14	ND	ND	ND	ND	ND	ND	-	-	-	-		
Polycyclic Aromatic Hydrocarbons												
Pyrene	ND	ND	ND	ND	ND	0.031	-	-	-	NA ^{10, 11}		
Naphthalene	ND	ND	ND	ND	ND	ND	-	-	-	(190) 10,12,13v		
Benzo[a]pyrene TEQ (LOR) 9	ND	ND	ND	ND	ND	0.04	-	20	40	35		
All other PAHs below the laboratory detection limit ⁹	ND	ND	ND	ND	ND	ND	-	-	-	-		
Pentachlorophenol (PCP)												
All pentachlorophenols below the laboratory detection limit 14	ND	ND	ND	ND	ND	ND	-	-	-	-		
Tributyltin (TBT)	_	_	_									
All tributyltins below the laboratory detection limit 14	ND	ND	ND	ND	ND	ND	-	-	-	-		

34	Concentration above Auckland Council Background Criteria
ND	Concentration below laboratory limit of detection
	No guideline value available / contaminant not measured

^{1.} Results in mg/kg.

- 2. Results as presence/absence of asbestos fibres in soil.
- 3. Criteria from Table E30.6.1.4.2 of the Auckland Unitary Plan Operative in Part (Background Concentrations of Inorganic Elements in Soils from the Auckland Region (AC, 2018)) Non Volcanic soils.
- 4. Criteria from Table E30.6.1.4.1 of the Auckland Unitary Plan Operative in Part (Permitted activity soil acceptance criteria (AC 2018)).
- 5. Criteria from Table B2 and B3, Appendix B of the Resource Management (National Environmental Standards for Assessing and Managing Contaminants in Soil to Protect Human Health) Regulations (NESCS, 2011): Commercial/industrial outdoor worker (unpaved) and recreational land-use.
- 6. Guideline value (from NESCS, 2011) is for Chromium VI.
- 7. SCS value for lead is inorganic
- 8. Criteria from "Schedule B(1) Guideline on Investigation Levels for Soils and Groundwater National Environment Protection Measure" (NEPM, 2013). Table 1A(1) Health investigation levels for soil contaminants (mg/kg) Recreation and Commercial/industrial use.
- 9. Risk associated with mixture of carcinogenic PAHs assessed by comparison with the Resource Management (National Environmental Standard for Assessing and Managing Contaminants in Soil to Protect Human Health) Regulations 2011. Where a result is reported as less than the limit of reporting (LOR) the LOR value is used to calculate the toxic equivalent (TEQ) for that PAH.
- 10. Values from Guidelines for Assessing and Managing Petroleum Hydrocarbon Contaminated Sites in New Zealand (MfE, 2011) Tier 1 guidelines Table 4.11 Tier 1 Soil acceptance criteria for PAHs Commercial/Industrial use ALL PATHWAYS, Sand, <1m.
- 11. NA indicates contaminant not limiting as estimated health-based criterion is significantly higher than that likely to be encountered on site.
- 12. Brackets denote values exceed threshold likely to correspond to formation of residual separate phase hydrocarbons. For further explanation refer to Appendix 4M in Values from Guidelines for Assessing and Managing Pertoleum Hydrocarbon Contaminated Sites in New Zealand (MfE, 2011).
- 13. The following note indicates the limiting pathway for each criterion: v Volatilisation.
- 14. Due to all contaminants tested being below the laboratory detection limit, no guideline values are presented for comparison.

Soil Sample ID	TT \$\$11 0.1	TT_SS12_0.1	BH_SS01_0.1	BH_SS02_0.3	BH_SS03_0.1	BH_SS04_0.3				
Lab Identification Number	2674272.54	2674272.56	2677154.57	2677154.60	2677154.61	2677154.64	Background Ranges of Trace	AUP OP Permitted Activity Criteria	NESCS S	CSs and SGVs 5
Sample Date	6/08/2021	6/08/2021	10/08/2021	11/08/2021	11/08/2021	11/08/2021	Elements in Auckland Soils	4		
Sample Depth (mbgl)	0.1	0.1	0.1	0.3	0.1	0.3	Non Volcanic ³	1	Recreational	Commercial / Industrial
Heavy Metals		•			•	•	•	•		•
Arsenic	31	4	4	3	4	3	0.4 - 12	100	80	70
Cadmium	0.38	< 0.10	0.3	0.14	0.48	0.15	<0.1 - 0.65	7.5	400	1,300
Chromium (total)	26	16	23	22	21	18	2 - 55	400	2,700 ⁶	6,300 ⁶
Copper	29	4	13	8	14	7	1 - 45	325	>10,000	>10,000
Lead	43	19.8	10.3	11.4	210	24	<5 - 65	250	880 ⁷	3,300 7
Nickel	8	4	8	8	7	6	0.9 - 35	105	1,2008	6,000 ⁸
Zinc	210	39	73	67	230	54	9 - 180	400	30,000 ⁸	400,000 ⁸
Organochlorine Pesticides										
All OCPs below the laboratory detection limit 14	ND	ND	-	-	-	-	-	-	=	=
Polycyclic Aromatic Hydrocarbons										
Pyrene	0.099	ND	-	-	-	-	-	-	=	NA ^{10, 11}
Naphthalene	NA	ND	-	-	-	-	-	-	-	(190) 10,12,13v
Benzo[a]pyrene TEQ (LOR) 9	0.09	ND	-	-	-	-	-	20	40	35
All other PAHs below the laboratory detection limit ⁹	ND	ND	-	=	=	-	-	-	-	-
Pentachlorophenol (PCP)										
All pentachlorophenols below the laboratory detection limit 14	ND	ND	-	-	-	-	-	-	-	-
Tributyltin (TBT)										
All tributyltins below the laboratory detection limit 14	ND	ND	-	-		-	-	-	=	-
Asbestos Presense / Absense	_	_		•	•					_
Lab Identification Number	-	-	2677351.1	2677351.2	2677351.3	2677351.4	-	-	=	-
Present (Y/N) 15	-	-	N	N	N	N	-	-	-	-

34	Concentration above Auckland Council Background Criteria
ND	Concentration below laboratory limit of detection
-	No guideline value available / contaminant not measured

^{1.} Results in mg/kg.

- 2. Results as presence/absence of asbestos fibres in soil.
- 3. Criteria from Table E30.6.1.4.2 of the Auckland Unitary Plan Operative in Part (Background Concentrations of Inorganic Elements in Soils from the Auckland Region (AC, 2018)) Non Volcanic soils.
- 4. Criteria from Table E30.6.1.4.1 of the Auckland Unitary Plan Operative in Part (Permitted activity soil acceptance criteria (AC 2018)).
- 5. Criteria from Table B2 and B3, Appendix B of the Resource Management (National Environmental Standards for Assessing and Managing Contaminants in Soil to Protect Human Health) Regulations (NESCS, 2011): Commercial/industrial outdoor worker (unpaved) and recreational land-use.
- 6. Guideline value (from NESCS, 2011) is for Chromium \
- 7. SCS value for lead is inorganic.
- 8. Criteria from "Schedule B(1) Guideline on Investigation Levels for Soils and Groundwater National Environment Protection Measure" (NEPM, 2013). Table 1A(1) Health investigation levels for soil contaminants (mg/kg) Recreation and Commercial/industrial use.
- 9. Risk associated with mixture of carcinogenic PAHs assessed by comparison with the Resource Management (National Environmental Standard for Assessing and Managing Contaminants in Soil to Protect Human Health) Regulations 2011. Where a result is reported as less than the limit of reporting (LOR) the LOR value is used to calculate the toxic equivalent (TEQ) for that PAH.
- 10. Values from Guidelines for Assessing and Managing Petroleum Hydrocarbon Contaminated Sites in New Zealand (MfE, 2011) Tier 1 guidelines Table 4.11 Tier 1 Soil acceptance criteria for PAHs Commercial/Industrial use ALL PATHWAYS, Sand, <1m.
- 11. NA indicates contaminant not limiting as estimated health-based criterion is significantly higher than that likely to be encountered on site.

 12. Brackets denote values exceed threshold likely to correspond to formation of residual separate phase hydrocarbons. For further explanation refer to Appendix 4M in Values from Guidelines for Assessing and Managing Pertoleum Hydrocarbon Contaminated Sites in New Zealand (MfE, 2011).
- 13. The following note indicates the limiting pathway for each criterion: v Volatilisation.
- 14. Due to all contaminants tested being below the laboratory detection limit, no guideline values are presented for comparison.
- 15. Asbestos presence/absence from analytical testing ('Y' = yes or 'N' = no).

Table 2 Continued: Soil Sample Results - Muriwai Downs Golf Project - Recreation and Commercial/Industrial Land Use - Heavy Metals 1, Organochlorine Pesticides 1, Polycyclic Aromatic Hydrocarbons 1, Pentachlorophenol 1, Tributyltin 1 and Asbestos 2.

Soil Sample ID	BH_SS05_0.1	BH_SS06_0.3	BH_SS07_0.3	BH_SS08_0.1	BH_SS09_0.3	BH_SS10_0.1					
Lab Identification Number	2677154.65	2677154.68	2677154.70	2677154.71	2677154.74	2677154.75	Background Ranges of Trace Elements in Auckland Soils	AUP OP Permitted Activity Criteria	ria NESCS SCSs and SGVs ⁵		
Sample Date	11/08/2021	11/08/2021	11/08/2021	11/08/2021	11/08/2021	11/08/2021	Elements in Adekiand 3013	4			
Sample Depth (mbgl)	0.1	0.3	0.3	0.1	0.3	0.1	Non Volcanic ³	7	Recreational	Commercial / Industrial	
Heavy Metals										-	
Arsenic	3	3	5	4	5	3	0.4 - 12	100	80	70	
Cadmium	0.35	0.13	0.11	0.25	0.15	0.26	<0.1 - 0.65	7.5	400	1,300	
Chromium (total)	18	20	27	21	21	18	2 - 55	400	2,700 ⁶	6,300 ⁶	
Copper	11	7	7	12	8	9	1 - 45	325	>10,000	>10,000	
Lead	27	19.2	11.2	32	25	29	<5 - 65	250	880 ⁷	3,300 ⁷	
Nickel	6	6	6	7	5	6	0.9 - 35	105	1,200 8	6,000 ⁸	
Zinc	63	54	57	77	66	70	9 - 180	400	30,000 ⁸	400,000 ⁸	
Asbestos Presense / Absense											
Lab Identification Number	2677351.5	2677351.6	2677351.7	2677351.8	2677351.9	2677351.10	÷	-	ē	=	
Present (Y/N) 9	N	N	N	N	N	N	_	-	-	-	

- No guideline value available / contaminant not measured

2. Results as presence/absence of asbestos fibres in soil.

3. Criteria from Table E30.6.1.4.2 of the Auckland Unitary Plan Operative in Part (Background Concentrations of Inorganic Elements in Soils from the Auckland Region (AC, 2018)) - Non Volcanic soils.

4. Criteria from Table E30.6.1.4.1 of the Auckland Unitary Plan Operative in Part (Permitted activity soil acceptance criteria (AC 2018)).

5. Criteria from Table B2 and B3, Appendix B of the Resource Management (National Environmental Standards for Assessing and Managing Contaminants in Soil to Protect Human Health) Regulations (NESCS, 2011): Commercial/industrial outdoor worker (unpaved) and recreational land-use.

6. Guideline value (from NESCS, 2011) is for Chromium VI.

7. SCS value for lead is inorganic.

8. Criteria from "Schedule B(1) Guideline on Investigation Levels for Soils and Groundwater National Environment Protection Measure" (NEPM, 2013). Table 1A(1) Health investigation levels for soil contaminants (mg/kg) - Recreation and Commercial/industrial use.

9. Asbestos presence/absence from analytical testing ('Y' = yes or 'N' = no).

Table 2 Continued: Soil Sample Results - Muriwai Downs Golf Project - Recreation and Commercial/Industrial Land Use - Heavy Metals 1, Organochlorine Pesticides 1, Polycyclic Aromatic Hydrocarbons 1, Pentachlorophenol 1, Tributyltin 1 and Asbestos 2.

Soil Sample ID	DU 0044 0.2	BH_SS12_0.3	DU 5542 0.4	DU 5544 0.3	DIL CCAE OA	DIL CCAC OA		I I		
-	BH_SS11_0.3		BH_SS13_0.1	BH_SS14_0.3	BH_SS15_0.1	BH_SS16_0.1	Background Ranges of Trace	AUP OP Permitted Activity Criteria	NESCS SCSs and SGVs ⁵	
Lab Identification Number	2677154.78	2677154.80		2677154.84	2677154.85	2677154.87	Elements in Auckland Soils			
Sample Date	11/08/2021	10/08/2021		11/08/2021	11/08/2021	11/08/2021				
Sample Depth (mbgl)	0.3	0.3		0.3	0.1	0.1	Non Volcanic ³		Recreational	Commercial / Industrial
Heavy Metals										
Arsenic	5	4		3	3	3	0.4 - 12	100	80	70
Cadmium	0.17	0.12		< 0.10	0.27	0.32	<0.1 - 0.65	7.5	400	1,300
Chromium (total)	24	23		20	18	17	2 - 55	400	2,700 ⁶	6,300 ⁶
Copper	11	8		6	12	9	1 - 45	325	>10,000	>10,000
Lead	22	8.5		7.3	42	24	<5 - 65	250	880 ⁷	3,300 7
Nickel	6	8		6	6	6	0.9 - 35	105	1,200 8	6,000 ⁸
Zinc	77	72		55	71	86	9 - 180	400	30,000 ⁸	400,000 ⁸
Asbestos Presense / Absense										
Lab Identification Number	2677351.11	2677351.12	2677351.13	2677351.14	2677351.15	2677351.16	-	-	-	-
Present (Y/N) 9	N	N	N	N	N	N	-	-	-	-

No guideline value available / contaminant not measured

1. Results in mg/kg.

Results as presence/absence of asbestos fibres in soil.

3. Criteria from Table E30.6.1.4.2 of the Auckland Unitary Plan Operative in Part (Background Concentrations of Inorganic Elements in Soils from the Auckland Region (AC, 2018)) - Non Volcanic soils.

4. Criteria from Table E30.6.1.4.1 of the Auckland Unitary Plan Operative in Part (Permitted activity soil acceptance criteria (AC 2018)).

5. Criteria from Table B2 and B3, Appendix B of the Resource Management (National Environmental Standards for Assessing and Managing Contaminants in Soil to Protect Human Health) Regulations (NESCS, 2011): Commercial/industrial outdoor worker (unpaved) and recreational land-use.

6. Guideline value (from NESCS, 2011) is for Chromium V

7. SCS value for lead is inorgan

8. Criteria from "Schedule B(1) Guideline on Investigation Levels for Soils and Groundwater National Environment Protection Measure" (NEPM, 2013). Table 1A(1) Health investigation levels for soil contaminants (mg/kg) - Recreation and Commercial/industrial use.

9. Asbestos presence/absence from analytical testing ('Y' = yes or 'N' = no).

^{1.} Results in mg/kg.

Table 2 Continued: Soil Sample Results - Muriwai Downs Golf Project - Recreation and Commercial/Industrial Land Use - Heavy Metals 1, Organochlorine Pesticides 1, Polycyclic Aromatic Hydrocarbons 1, Pentachlorophenol 1, Tributyltin 1 and Asbestos 2.

Soil Sample ID	BH_SS17_0.1	BH_SS18_0.1	BH_SS19_0.3	BH_SS20_0.1	BH_SS21_0.3	BH_SS22_0.1	Background Ranges of Trace Elements in Auckland Soils Non Volcanic ³ AUP OP Permitted Ac		ivity Criteria NESCS SCSs and SGVs ⁵	
Lab Identification Number	2677154.89	2677154.91	2677154.94	2677154.95	2677154.98	2677154.99		AUP OP Permitted Activity Criteria		
Sample Date	11/08/2021	10/08/2021	11/08/2021	11/08/2021	11/08/2021	11/08/2021		4		
Sample Depth (mbgl)	0.1	0.1	0.3	0.1	0.3	0.1		Ī	Recreational	Commercial / Industrial
Heavy Metals										-
Arsenic	4	4	3	4	4	4	0.4 - 12	100	80	70
Cadmium	0.30	0.23	0.11	0.27	< 0.10	0.27	<0.1 - 0.65	7.5	400	1,300
Chromium (total)	20	17	19	17	19	19	2 - 55	400	2,700 ⁶	6,300 ⁶
Copper	10	10	7	10	6	8	1 - 45	325	>10,000	>10,000
Lead	21	7.9	77	8.9	15.1	12.7	<5 - 65	250	880 ⁷	3,300 ⁷
Nickel	7	7	5	6	5	8	0.9 - 35	105	1,200 ⁸	6,000 ⁸
Zinc	83	62	53	60	40	58	9 - 180	400	30,000 ⁸	400,000 ⁸
Asbestos Presense / Absense										
Lab Identification Number	2677351.17	2677351.18	2677351.19	2677351.2	2677351.21	2677351.22	=	-	≘	=
Present (Y/N) 9	N	N	N	N	N	N	-	-	-	-

- No guideline value available / contaminant not measured

2. Results as presence/absence of asbestos fibres in soil.

3. Criteria from Table E30.6.1.4.2 of the Auckland Unitary Plan Operative in Part (Background Concentrations of Inorganic Elements in Soils from the Auckland Region (AC, 2018)) - Non Volcanic soils.

4. Criteria from Table E30.6.1.4.1 of the Auckland Unitary Plan Operative in Part (Permitted activity soil acceptance criteria (AC 2018)).

5. Criteria from Table B2 and B3, Appendix B of the Resource Management (National Environmental Standards for Assessing and Managing Contaminants in Soil to Protect Human Health) Regulations (NESCS, 2011): Commercial/industrial outdoor worker (unpaved) and recreational land-use.

6. Guideline value (from NESCS, 2011) is for Chromium VI.

7. SCS value for lead is inorganic.

8. Criteria from "Schedule B(1) Guideline on Investigation Levels for Soils and Groundwater National Environment Protection Measure" (NEPM, 2013). Table 1A(1) Health investigation levels for soil contaminants (mg/kg) - Recreation and Commercial/industrial use.

9. Asbestos presence/absence from analytical testing ('Y' = yes or 'N' = no).

Table 2 Continued: Soil Sample Results - Muriwai Downs Golf Project - Recreation and Commercial/Industrial Land Use - Heavy Metals 1, Organochlorine Pesticides 1, Polycyclic Aromatic Hydrocarbons 1, Pentachlorophenol 1, Tributyltin 1 and Asbestos 2.

Soil Sample ID	KC_SS01_0.1 - KC_SS04_0.1	KC_SS05_0.1 - KC_SS08_0.1	KC_SS09_0.1 - KC_SS12_0.1	KC_SS13_0.1 - KC_SS16_0.1	KC_SS17_0.1 - KC_SS20_0.1	KC_SS21_0.1 - KC_SS24_0.1	Background Ranges of Trace			
Lab Identification Number	2677154.101	2677154.102	2677154.103	2677154.104	2677154.105	2677154.106		AUP OP Permitted Activity Criteria	NESCS SCSs and SGVs ⁵	
Sample Type	Lab Composite	Elements in Auckland Soils	4							
Sample Date	10/08/2021	10/08/2021	10/08/2021	10/08/2021	10/08/2021	10/08/2021	7			
Sample Depth (mbgl)	0.1	0.1	0.1	0.1	0.1	0.1	Non Volcanic ³] '	Recreational	Commercial / Industrial
Heavy Metals										
Arsenic	3	4	6	5	5	7	0.4 - 12	100	80	70
Cadmium	0.32	0.36	0.4	0.41	0.4	0.34	<0.1 - 0.65	7.5	400	1,300
Chromium (total)	11	11	17	16	16	17	2 - 55	400	2,700 ⁶	6,300 ⁶
Copper	7	9	9	13	12	9	1 - 45	325	>10,000	>10,000
Lead	10.2	8.7	11.5	11.7	15.5	13.1	<5 - 65	250	880 ⁷	3,300 7
Nickel	3	4	4	5	6	6	0.9 - 35	105	1,200 8	6,000 ⁸
Zinc	24	29	32	52	40	31	9 - 180	400	30,000 ⁸	400,000 8
Organochlorine Pesticides							•			
All OCPs below the laboratory detection limit ⁹	ND	ND	ND	ND	ND	ND	-	-	-	-

ND Concentration below laboratory limit of detection
No guideline value available / contaminant not measured

1. Results in mg/kg.

Results as presence/absence of asbestos fibres in soil.

3. Criteria from Table E30.6.1.4.2 of the Auckland Unitary Plan Operative in Part (Background Concentrations of Inorganic Elements in Soils from the Auckland Region (AC, 2018)) - Non Volcanic soils.

4. Criteria from Table E30.6.1.4.1 of the Auckland Unitary Plan Operative in Part (Permitted activity soil acceptance criteria (AC 2018)).

5. Criteria from Table B2 and B3, Appendix B of the Resource Management (National Environmental Standards for Assessing and Managing Contaminants in Soil to Protect Human Health) Regulations (NESCS, 2011): Commercial/industrial outdoor worker (unpaved) and recreational land-use.

6. Guideline value (from NESCS, 2011) is for Chromium \

7. SCS value for lead is inorga

8. Criteria from "Schedule B(1) Guideline on Investigation Levels for Soils and Groundwater National Environment Protection Measure" (NEPM, 2013). Table 1A(1) Health investigation levels for soil contaminants (mg/kg) - Recreation and Commercial/industrial use.

9. Due to all contaminants tested being below the laboratory detection limit, no guideline values are presented for comparison.

^{1.} Results in mg/kg.

Soil Sample ID	KC_SS25_0.1 - KC_SS28_0.1					
Sample Type	Lab Composite		Background Ranges of Trace	AUP OP Permitted Activity Criteria	NESCS SCSs and SGVs ⁵	
Sample Date	10/08/2021		Elements in Auckland Soils			
Lab Identification Number	2677154.107					
Sample Depth (mbgl)	0.1		Non Volcanic ³		Recreational	Commercial / Industrial
Heavy Metals						-
Arsenic	5		0.4 - 12	100	80	70
Cadmium	0.37		<0.1 - 0.65	7.5	400	1,300
Chromium (total)	16		2 - 55	400	2,700 ⁶	6,300 ⁶
Copper	19		1 - 45	325	>10,000	>10,000
Lead	12.8		<5 - 65	250	880 ⁷	3,300 ⁷
Nickel	6		0.9 - 35	105	1,200 ⁸	6,000 ⁸
Zinc	80		9 - 180	400	30,000 8	400,000 ⁸
Organochlorine Pesticides						
All OCPs below the laboratory detection limit ⁹	ND		-	=	-	-

ND	Concentration below laboratory limit of detection
-	No guideline value available / contaminant not measured

^{1.} Results in mg/kg.

^{2.} Results as presence/absence of asbestos fibres in soil.

^{3.} Criteria from Table E30.6.1.4.2 of the Auckland Unitary Plan Operative in Part (Background Concentrations of Inorganic Elements in Soils from the Auckland Region (AC, 2018)) - Non Volcanic soils.

^{4.} Criteria from Table E30.6.1.4.1 of the Auckland Unitary Plan Operative in Part (Permitted activity soil acceptance criteria (AC 2018)).

^{5.} Criteria from Table B2 and B3, Appendix B of the Resource Management (National Environmental Standards for Assessing and Managing Contaminants in Soil to Protect Human Health) Regulations (NESCS, 2011): Commercial/industrial outdoor worker (unpaved) and recreational land-use.

^{6.} Guideline value (from NESCS, 2011) is for Chromium VI.

^{7.} SCS value for lead is inorganic.

^{8.} Criteria from "Schedule B(1) Guideline on Investigation Levels for Soils and Groundwater National Environment Protection Measure" (NEPM, 2013). Table 1A(1) Health investigation levels for soil contaminants (mg/kg) - Recreation and Commercial/industrial use.

^{9.} Due to all contaminants tested being below the laboratory detection limit, no guideline values are presented for comparison.

- Dieldrin was also detected (and therefore considered an exceedance of background concentrations) in soil sample WS_SS04_0.1 at a concentration below the NESCS SCSs for recreational and commercial/industrial land use, and the AUP:OP PA soil acceptance criteria.
- Apart from the above, the concentrations of heavy metals and OCPs in the analysed soil samples collected from this area are below their respective NESCS SCSs/EGVs for recreational and commercial/industrial land use, AUP:OP PA soil acceptance criteria and background concentrations of non-volcanic soils in the Auckland region.

7.2.2 Treated Timber Storage Area

- Soil sample TT_SS02_0.1 has a reported concentration of arsenic (94 mg/kg) that exceeds the NESCS SCS for recreational (80 mg/kg) and commercial/industrial land use (70 mg/kg), and the published background concentration of non-volcanic soils in the Auckland region (12 mg/kg) but remains below the AUP:OP PA soil acceptance criteria (100 mg/kg). However, the 95% upper confidence limit (UCL) of the arsenic concentration for the 12 analysed surface soil samples from this area has been calculated (as shown in Appendix G) to be 48.6 mg/kg (still above the published background concentration of non-volcanic soils in the Auckland region but below the NESCS SCS for recreational and commercial/industrial land use, and the AUP:OP PA soil acceptance criteria).
- A further six analysed soil samples (TT_SS04_0.1, TT_SS05_0.1, TT_SS07_0.1, TT_SS09_0.1, TT_SS10_0.1 and TT_SS11_0.1) collected from 12 locations within this area have reported concentrations of arsenic, chromium, copper, lead and/or zinc that exceed the published background concentrations of non-volcanic soils in the Auckland region but are below the NESCS SCSs/EGVs for recreational and commercial/industrial land use, and the AUP:OP PA soil acceptance criteria.
- Various compounds of PAHs were detected (and therefore considered an exceedance of background concentrations) in two of the analysed soil samples (TT_SS10_0.1 and TT_SS11_0.1) including:
 - Benzo(a)pyrene (equivalent) at concentrations below the NESCS SCS for recreational and commercial/industrial land use, and AUP:OP PA soil acceptance criteria; and
 - Pyrene, which is not a limiting contaminant as the estimated health-based criterion is significantly higher than that likely to be encountered onsite and therefore, the detected concentrations are not expected to be a risk to human health.
- At all other locations, the concentrations of heavy metals, OCPs and PAHs in the analysed soil samples collected from this area are below their respective NESCS SCSs/EGVs for recreational and commercial/industrial land use, AUP:OP PA soil acceptance criteria and background concentrations of non-volcanic soils in the Auckland region.
- PCP and TBT have not been reported at concentrations above the laboratory LOR in all analysed soil samples collected from 12 locations within this area.

7.2.3 Historical Kumara Crops Area

All seven composite samples combined from soil samples collected from 28 locations within this area did not detect any OCPs and have concentrations of heavy metals⁵ that are below the NESCS SCSs/EGVs for recreational and commercial/industrial land use, the AUP:OP PA soil acceptance criteria and the published background concentrations of non-volcanic soils in the Auckland region.

7.2.4 Former Boarding House Area

- Soil sample BH_SS03_0.1 has reported concentrations of lead and zinc that exceeds the published background concentrations of non-volcanic soils in the Auckland region but remain below the NESCS SCSs/EGVs for recreational and commercial/industrial land use, and AUP:OP PA soil acceptance criteria.
- Apart from the above, the concentrations of heavy metals in the analysed soil samples collected from this area are below their respective NESCS SCSs/EGVs for recreational and commercial/industrial land use, AUP:OP PA soil acceptance criteria and background concentrations of non-volcanic soils in the Auckland region.
- : Asbestos is absent from all analysed soil samples collected from 22 locations within this area.

8.0 Conceptual Site Model and Risk Assessment

A conceptual site model (CSM) was developed using the information acquired in the preparation of the Updated PSI report (PDP, 2021a). The CSM has been updated to reflect the findings of this DSI, as summarised below in Table 3.

As PCP, TBT and asbestos have not been detected in the analysed soil samples, and none of the analysed soil samples have concentrations of heavy metals, OCPs or PAHs that are above the AUP:OP PA soil acceptance criteria, the soil at the site is not considered to pose an unacceptable risk to the environment.

While the arsenic concentrations of one surface soil sample collected from the Sheep Spray Shower & Woolshed and Treated Timber Storage areas exceeds the NESCS SCSs/EGVs for recreational and/or commercial/industrial land use, the 95% upper confidence limit of the arsenic concentrations for the analysed surface soil samples from each of these two areas have been calculated to be below the NESCS SCSs/EGVs for recreational land and/or commercial/industrial use. As none of the sampling areas are considered to have concentrations of heavy metals, OCPs or PAHs that are above the NESCS SCSs/EGVs for recreational and commercial/industrial land use, the soil at the site is not considered to pose an unacceptable risk to human health for the proposed development.

⁵ On the basis of the likely uniform distribution of COPC across the Historical Kumara Crops area (from aerial spraying), the concentrations of heavy metals of the composite samples have not been adjusted for comparison to the SCS/EGVs (i.e. they have not been multiplied by 4 [the number of primary soil samples that were combined into each of the composite soil samples]).

Table 3: Updated Co	nceptual Site Mode	for Muriwai Downs	
Source	Pathway	Receptor	Pathway Linkage
Storage of treated timber (potential contaminants could include PCPs, copper, arsenic, chromium, boron, PAHs and OCPs –	Ingestion of soil	Site users (maintenance personnel/golfers)	Incomplete – due to none of the analysed soil samples having concentrations of COPC that are above
	Dermal contact with soil	Site users (maintenance personnel/golfers)	the NESCS SCSs/EGVs for recreational and commercial/industrial land use or the AUP:OP PA soil acceptance criteria.
HAIL Category A18	Infiltration to groundwater	Groundwater users	
	Runoff to surface water	Surface water	
Application of agrichemicals to crops (Historical Kumara Crops) (potential contaminants could	Ingestion of soil	Site users (maintenance personnel/golfers)	Incomplete – due to none of the analysed soil samples having concentrations of COPC that are above
	Dermal contact with soil	Site users (maintenance personnel/golfers)	the NESCS SCSs/EGVs for recreational and commercial/industrial land use or the AUP:OP PA soil acceptance criteria.
include OCPs, acid herbicides, arsenic, lead and copper) –	Infiltration to groundwater	Groundwater users	
HAIL Category A10	Runoff to surface water	Surface water	
Sheep Spray Shower & Woolshed (potential	Ingestion of soil	Site users (maintenance personnel/golfers)	Incomplete – due to none of the analysed soil samples having concentrations of COPC that are above
contaminants could include arsenic, organochlorines (including DDT,	Dermal contact with soil	Site users (maintenance personnel/golfers)	the NESCS SCSs/EGVs for recreational and commercial/industrial land use or the AUP:OP PA soil acceptance criteria.
lindane, dieldrin and aldrin) and	Infiltration to groundwater	Groundwater users	
organophosphates) – HAIL Category A8	Runoff to surface water	Surface water	
Localised impacts from painted surfaces on	Ingestion of soil	Site users (maintenance personnel/golfers)	Incomplete – due to none of the analysed soil samples having concentrations of COPC that are above
current/historic structures (Former Boarding House; potential	Dermal contact with soil	Site users (maintenance personnel/golfers)	the NESCS SCSs/EGVs for recreational and commercial/industrial land use or the AUP:OP PA soil acceptance criteria.
contaminants could include lead and	Infiltration to groundwater	Groundwater users	
arsenic) – potential HAIL Category I	Runoff to surface water	Surface water	

Table 3: Updated Conceptual Site Model for Muriwai Downs							
Source	Pathway	Receptor	Pathway Linkage				
Asbestos building products in a deteriorated condition (Former Boarding House) – HAIL Category E1	Inhalation of air borne asbestos fibres	Site users (maintenance personnel/golfers)	Incomplete – due to asbestos being absent from all analysed soil samples.				

9.0 Regulatory Assessment (Contaminated Land)

9.1 NESCS

The NESCS regulations apply to the activities of soil disturbance and change of land use on a piece of land where HAIL activity is being, has been or is more likely than not to have been undertaken. The results of the historical review identified a number of potential and confirmed HAIL land uses at discrete areas across the site (including those outlined in Table 3 above).

For those discrete areas of the site where HAIL activities have occurred and COPC have been detected in soil samples at concentrations above the published background concentrations of non-volcanic soils in the Auckland region but below the NESCS SCSs/EGVs for recreational and commercial/industrial land use, a **controlled activity** consent under Regulation 9 of the NESCS will be required for the proposed soil disturbance and change in land use. This will require a Site Management Plan (SMP) to be prepared prior to undertaking any earthworks at the following areas:

- Former Boarding House.
- Sheep Spray Shower & Woolshed.
- : Treated Timber Storage.

The NESCS does not apply to the soil disturbance associated with the development of the Historical Kumara Crops area as the COPC that have been detected in the soil samples are at concentrations below the published background concentrations of non-volcanic soils in the Auckland region in compliance with Regulation 5(9) of the NESCS.

The NESCS also does not apply to the areas of the site that are proposed to be developed (i.e. change in land use and/or soil disturbance) but no contamination/HAIL sources have been identified, or where production land continues to be used for that purposes as part of the operational farm.

9.2 AUP:OP

Discharges of contaminants into air, or into water, or onto or into land from disturbing soil on land containing elevated levels of contaminants are regulated by AUP:OP contaminated land rules (Chapter E30).

As all analysed soil samples from the site have concentrations of COPC that are below the AUP:OP PA soil acceptance criteria, it is considered that the site does not contain elevated levels of contaminants (as defined by the AUP:OP) and a consent under the contaminated land rules of the AUP:OP is **not required** and the soil disturbance associated with the project can be undertaken outside of the contaminated land rules (Chapter E30).

10.0 Conclusions and Recommendations

PDP has been engaged by GSG to undertake a DSI to support the consenting of the project, which includes the properties located at 451, 610, 614, 670, 680 and 697 Muriwai Road, Waimauku. The objectives of this DSI were to assess the likelihood of human health and environmental risk associated with the proposed soil disturbance and change of land use, and to assess the requirements for potential resource consents in relation to the NESCS and the AUP:OP contaminated land rules.

The investigation, as detailed in the SAP (PDP, 2021b), included sampling observations, collection and selective analysis of soil samples for heavy metals, OCPs, PAHs, PCP, TBT and/or presence/absence asbestos in shallow soils from 73 locations across four discrete areas within the site with potential or known contamination/HAIL sources⁶ that are proposed to be disturbed/developed as part of the golf course (as outlined in Section 3.0).

The key findings of this DSI are as follows:

- No visual or olfactory evidence of contamination (including buried refuse and/or fill) was observed in any of the collected soil samples.
- No groundwater was encountered in any of the hand augered locations down to the target depths though suspected perched groundwater was encountered at two locations within the Sheep Spray Shower & Woolshed area.
- : No fragments of ACM were encountered in any of the hand augered locations down to the target depths.
- All analysed soil samples have concentrations of COPC that are below the AUP:OP PA soil acceptance criteria.
- All seven composite samples combined from soil samples collected from 28 locations within the Historical Kumara Crops area did not report any OCPs or concentrations of heavy metals that are above the NESCS SCSs/EGVs for recreational and commercial/industrial land use, and the published background concentration of non-volcanic soils in the Auckland region.
- Three of the 33 analysed surface soil samples collected from the Former Boarding House and Sheep Spray Shower & Woolshed areas reported concentrations of arsenic, copper, lead and/or zinc that exceed the published background concentrations of non-volcanic soils in the Auckland region but are below the NESCS SCS for recreational and commercial/industrial land use. While one of these surface soil samples collected from a holding/draining pen at the Sheep Spray Shower & Woolshed area also has a concentration of arsenic that also exceeds the NESCS SCS for commercial/industrial land use, the 95% UCL of the arsenic concentration for the 11 analysed surface soil samples from this area has been calculated to be above the published background concentration of non-volcanic soils in the Auckland region but below the NESCS SCS for commercial/industrial land use and the AUP:OP PA soil acceptance criteria.
- Asbestos is absent from all analysed soil samples collected from 22 locations within the Former Boarding House area.

⁶ Including the areas where the historical kumara crops, treated timber storage, sheep spray shower and woolshed, and former boarding house were/are located. The other discrete areas across the site with identified potential or known contamination/HAIL sources (including the timber stored within a building in the workshop area and under the woolshed; other current/historical houses/structures constructed prior to the mid-1970s; bulk storage of diesel and petrol in unbunded ASTs, the storage of old fuel drums and fuel/chemicals, and burning of refuse in the workshop area; and the storage of chemicals in the hazardous chemicals storage shed located in the workshop area) were not assessed as part of this DSI as no soil disturbance and/or land use change has been proposed at those locations.

- Dieldrin was detected (and therefore considered an exceedance of background concentration) in one surface soil sample collected from the Sheep Spray Shower & Woolshed area at a concentration below the NESCS SCS for recreational and commercial/industrial land use, and the AUP:OP PA soil acceptance criteria.
- Half of the analysed surface soil samples collected from 12 locations within the Treated Timber Storage area have concentrations of arsenic, chromium, copper, lead and/or zinc that exceed the published background concentrations of non-volcanic soils in the Auckland region but are below the NESCS SCS for recreational and commercial/industrial land use. While one additional surface soil sample collected from this area has a concentration of arsenic that also exceeds the NESCS SCS for recreational and commercial/industrial land use, the 95% UCL of the arsenic concentration for the 12 analysed surface soil samples from this area has been calculated to be above the published background concentration of non-volcanic soils in the Auckland region but below the NESCS SCS for recreational and commercial/industrial land use and the AUP:OP PA soil acceptance criteria.
- PCP and TBT have not been detected in all analysed soil samples collected from 12 locations within the Treated Timber Storage area.

Based on the findings of this investigation, the following conclusions and recommendations have been made in relation to the objectives of this DSI:

- The soil disturbance and change of land use associated with the proposed development at the site is not considered to pose an unacceptable risk to human health (in the context of commercial/industrial and recreational land use) nor the environment.
- : The proposed development:
 - Does not require a consent for contaminated land rules under the AUP:OP;
 - Will require a controlled activity consent under Regulation 9 of the NESCS for the proposed soil disturbance and change in land use at the discrete areas described below; and
 - Will require a Site Management Plan (SMP) prior to undertaking any earthworks within the discrete areas of the site where HAIL activities have occurred and COPC have been detected in soil samples at concentrations above the published background concentrations of non-volcanic soils in the Auckland region (i.e. the Former Boarding House, Sheep Spray Shower & Woolshed, and Treated Timber Storage areas). The SMP should detail the appropriate soils handling and disposal measures that must be implemented, commensurate with the concentrations of contaminants observed at these areas of the site as well as to manage any unexpected discovery of previously unidentified contamination at the site.
- The soil from the Former Boarding House, Sheep Spray Shower & Woolshed, and Treated Timber Storage areas cannot be considered as cleanfill and any excess soil not reused onsite will require disposal at an appropriately licensed disposal facility.
- The NESCS does not apply to the soil disturbance associated with the development of the Historical Kumara Crops area as the COPC that have been detected in the soil samples are at concentrations below the published background concentrations of non-volcanic soils in the Auckland region in compliance with Regulation 5(9) of the NESCS.
- The NESCS also does not apply to the areas of the site that are proposed to be developed (i.e. change in land use and/or soil disturbance) but no contamination/HAIL sources have been identified, or where production land use will continue.

11.0 References

- AUP:OP, 2021. Auckland Unitary Plan: Operative in Part. Updated 11 June 2021. Auckland Council.
- Edbrooke, 2001. Geology of the Auckland area: scale 1:250,000. Lower Hutt: Institute of Geological & Nuclear Sciences Limited. Institute of Geological & Nuclear Sciences 1:250,000 geological map 3. 1 sheet + 74 p. Lower Hutt, New Zealand: Institute of Geological and Nuclear Sciences Limited.
- MfE, 1999. Guidelines for Assessing and Managing Petroleum Hydrocarbon Sites in New Zealand (revised 2011). Ministry for the Environment.
- MfE, 2011a. Contaminated Land Management Guidelines No. 2 Hierarchy and Application in New Zealand of Environmental Guideline Values (Revised 2011). Ministry for the Environment.
- MfE, 2011b. *Methodology for Deriving Standards for Contaminants in Soil to Protect Human Health*. Ministry for the Environment.
- MfE, 2021a. Contaminated Land Management Guidelines No. 1 Reporting on Contaminated Sites in New Zealand. Ministry for the Environment.
- MfE, 2021b. Contaminated Land Management Guidelines No. 5 Site Investigation and Analysis of Soils. Ministry for the Environment.
- NEPC, 2013. National Environment Protection (Assessment of Site Contamination) Measure *Guidelines on Investigation Levels for Soil and Groundwater*. Amended 2013. National Environment Protection Council.
- NESCS, 2011. Resource Management (*National Environmental Standard for Assessing and Managing Contaminants in Soil to Protect Human Health*) Regulations 2011. Ministry for the Environment.
- PDP, 2021a. *Muriwai Downs Golf Project: Updated Preliminary Site Investigation*. Pattle Delamore Partners Limited.
- PDP, 2021b. Sampling and Analysis Plan for the Muriwai Downs Golf Project, Waimauku. Pattle Delamore Partners Limited.

12.0 Limitations

This document has been prepared by Pattle Delamore Partners Limited (PDP) on the basis of information provided by Golf Strategy Group Limited and others (not directly contracted by PDP for the work), including Buddle Findlay and Mitchell Daysh Limited. PDP has not independently verified the provided information and has relied upon it being accurate and sufficient for use by PDP in preparing the document. PDP accepts no responsibility for errors or omissions in, or the currency or sufficiency of, the provided information.

This document has been prepared based on the collection and laboratory analysis of 55 soil samples from 73 locations across four discrete areas within the site for heavy metals, OCPs, PAHs, PCP, TBT and/or the presence/absence of asbestos in soil. The site conditions as described in this document have been interpreted from, and are subject to, this information and its limitations and accordingly PDP does not represent that its interpretation accurately represents the full site conditions.

This assessment is limited to collection and analysis of soil samples from discrete sampling locations. Interpretations of subsurface conditions, including contaminant concentrations, are not guaranteed at distance away from the specific points of sampling.

The information contained within this document applies to soil sampling undertaken on the dates stated in this document, or if none is stated, the date of this document. With time, the site conditions and environmental standards may change. Accordingly, the reported assessments and conclusions are not guaranteed to apply at a later date.

This document has been prepared by PDP on the specific instructions of Golf Strategy Group Limited for the limited purposes described in the document. PDP accepts no liability if the document is used for a different purpose or if it is used or relied on by any other person. Any such use or reliance will be solely at their own risk.

© 2021 Pattle Delamore Partners Limited

Yours faithfully

PATTLE DELAMORE PARTNERS LIMITED

Prepared by

Tom Harvey

Environmental Geologist

Reviewed by

Stefan Yap

Service Leader - Contaminated Land

Approved by

Erin Richards

Technical Director - Contaminated Land

Appendix A: Certifying Statement

I, Erin Richards of Pattle Delamore Partners, certify that:

- 1. This detailed site investigation meets the requirements of the Resource Management (*National Environmental Standard for Assessing and Managing Contaminants in Soil to Protect Human Health*) Regulations 2011 ('the NESCS') because it has been:
 - a. Done by a suitably qualified and experienced practitioner;
 - b. Done in accordance with the current edition of the Ministry for the Environment's (MfE's) Contaminated Land Management Guidelines No.5 – Site Investigation and Analysis of Soils;
 - c. Reported on in accordance with the current edition of the MfE's *Contaminated Land Management Guidelines No.1 Reporting on Contaminated Sites in New Zealand*; and
 - d. Certified by a suitably qualified and experienced practitioner.
- 2. This detailed site investigation concludes that the soil disturbance and change in land use associated with the proposed development at the site do not exceed the applicable standard in Regulation 7 of the NESCS.

Evidence of the qualifications and experience of the suitably qualified and experienced practitioner(s) who have done this investigation and certified this report is provided below.

This certification applies to the date of this report.

Signed

Erin Richards

Technical Director - Contaminated Land

Erin Richards - Project Director

Erin is a geologist with over 19 years of experience in geological and contaminated land assessments. She has a MSc in Geology (1st class hons) from the University of Auckland. Erin has extensive experience in contaminated land assessments and has undertaken as a consultant (either directly herself or as a project manager/director) hundreds of assessments across a variety of contaminated sites, which have ranged from greenfield sites (identified for development) through to complex brownfield assessments, including assessment/decommissioning of bulk storage fuel depots/terminals and large-scale redevelopment of commercial/industrial sites. Assessments have been widespread and have involved soil, groundwater and soil-gas investigations, resource consenting (NESCS through to long term discharge consenting under regional rules), spill response works, remediation (including development of remedial options assessments), dewatering assessments, development of management plans, Tier 2 risk assessments and ongoing compliance monitoring works. Erin was a primary author of the 2021 Contaminated Land Management Guidelines: CLMG No.1 and contributed to the updates of CLMG No.5. As such, she has a good familiarity with and understanding of the current contaminated land regulations and practice in New Zealand including assessments against the NESCS.

Stefan Yap - Project Manager and Preliminary Site Investigation Report Reviewer

Stefan is an environmental scientist with over 19 years of diverse experience within the environmental field throughout New Zealand and Asia Pacific with practical expertise in contaminated land management, environmental regulatory compliance and hazardous waste management. He has a BEnvSc (Hons) from Murdoch University. Stefan has prepared detailed assessments of contaminated sites, conceptual site models, remedial action plans, long-term management & monitoring plans and risk assessments. He has worked as a contaminated land specialist with small and large clients across a wide variety of industries including large-scale infrastructure, transport, oil & gas, energy, telecommunication, construction, education, manufacturing, recreation, agriculture & horticulture, and solid waste.

Tom Harvey - Investigation Field Operative and Author

Tom is an environmental geologist with 3 years' experience in undertaking environmental and contaminated land assessments. He has a BSc in Geology and Environmental Science and an MSc in Physical Geography (1st Class Hons) from Victoria University of Wellington. Tom has practical experience in a variety of contaminated land assessment techniques and has gained relevant experience in carrying out (and recently leading) and reporting on both Preliminary and Detailed Site Investigations.

Appendix B: Master Site Layout Plan

MURIWAI DOWNS

Muriwai, New Zealand

SITE PLAN

Appendix C: Bore Logs

Hand Auger / PID -

HAND AUGER LOG

Job No.:

A03582101

Test No.:

BH_SS13 1 of 1

Date: 11/08/21 Ground Level mRL:

Sheet:

Client: Site Address: Golf Strategy Group Muriwai Road Project: Coordinates:

5925584.8mE, 1728495.2mN (NZTM)

Muriwai Downs DSI Interpretation Depth (m) RL (m) **Geological Description** Graphic Samples PID Water Log Soil and Rock logged in accordance with New Zealand Geotechnical Society field description of soil Silty SAND; dark brown. Soft - loose, moist; sand, fine. -0.10m, BH_SS13_0.1 Sandy SILT; orange brown. -0.40m, BH_SS13_0.4 Moist, low plasticity. 0.5 56.5 SILT, with some sand and gravel, with minor clay; yellow/orange brown. Moist; gravel, fine, subangular to subround, Scoria. Silty CLAY; yellow/orange brown. Firm, moist, moderate plasticity; Some red brown/dark brown inclusions. 56.0 1.0 **Groundwater Not Encountered** SAND, with some silt; orange/yellow brown. Loose, moist, low plasticity; Some dark brown inclusions. 1.5 55.5 55.0 2.0 54.5 EOH: 3.00m Target Depth Achieved 3.0 54.0 Remarks **Investigation Type** Water ▼ Standing Water Level Hand Auger ← In flow Out flow Contractor: Rig/Plant Used: Logged By: Checked By: Hole Depth: PDP Hand Auger 3.00 m

Client:

HAND AUGER LOG

Site Address:

Job No.:

A03582101

Test No.: Sheet: KC_SS06 1 of 1

Date: 10/08/21
Ground Level mRL:

00....

Golf Strategy Group Muriwai Road

Project: Coordinates:

Muriwai Downs DSI 5925238.9mE, 1729433.1mN (NZTM) Interpretation Depth (m) RL (m) **Geological Description** Graphic Samples PID Water Log Soil and Rock logged in accordance with New Zealand Geotechnical Society field description of soil SILT & SAND; brown. Soft, moist, non-plastic. -0.10m, KC_SS06_0.1 SILT, with some sand, with minor clay; brown yellowy orange. Firm, moist, low plasticity. -0.30m, KC_SS06_0.3 0.5 97.5 Silty CLAY, with trace sand; orange yellowy brown. Firm, moist, moderate plasticity. Groundwater Not Encountered 1.0 97.0 Clayey SILT, with some sand; orange brown. Soft - firm, moist, low plasticity. Sandy SILT; orange/brown. Soft - firm, moist, non-plastic; some inclusions of grey pumicious sand / gravel and orange sand. 1.5 96.5 Silty SAND, with trace organics; orange/red. Soft - loose, moist to wet. EOH: 2.00m Target Depth Achieved **Investigation Type** Water Remarks ▼ Standing Water Level Hand Auger ← In flow Out flow Contractor: Rig/Plant Used: Logged By: Checked By: Hole Depth: PDP Hand Auger 2.00 m

Hand Auger / PID -

HAND AUGER LOG

Job No.:

A03582101

Test No.: Sheet: WS_SS10 1 of 1

Date: 06/08/21

Ground Level mRL:

Client:Site Address:Golf Strategy GroupMuriwai RoadProject:Coordinates:

Muriwai Downs DSI 5925991.3mE, 1729620.4mN (NZTM) Interpretation Depth (m) RL (m) **Geological Description** Graphic Samples PID Water Log Soil and Rock logged in accordance with New Zealand Geotechnical Society field description of soil Sandy SILT, with some gravel; dark greyish brown. Dry; gravel, angular. -0.10m, WS_SS11_0.1 Clayey SILT, with some gravel; orange brown. 0.2 61.8 -0.30m, WS_SS11_0.3 Silty CLAY; pale orange brown. Plastic. 61.6 **Groundwater Not Encountered** EOH: 1.00m Target Depth Achieved 61.0 Remarks **Investigation Type** Water ▼ Standing Water Level Hand Auger ← In flow Test Pit Out flow Contractor: Rig/Plant Used: Logged By: Checked By: Hole Depth: PDP Hand Auger 1.00 m

Appendix D: Sampling and Analysis Plan

Level 5, PDP House

235 Broadway, Newmarket, Auckland 1023 PO Box 9528, Auckland 1149, New Zealand Tel +64 9 **523 6900**Web <u>www.pdp.co.nz</u> **Auckland** Hamilton Tauranga Wellington
Christchurch Invercargill

2 August 2021

David Moore
Director
Golf Strategy Group Ltd
60 Clearwater Avenue
CHRISTCHURCH 8051

Dear David,

SAMPLING AND ANALYSIS PLAN FOR THE MURIWAI DOWNS GOLF PROJECT, WAIMAUKU

1.0 Introduction

Golf Strategy Group Limited (GSG) has engaged Pattle Delamore Partners Limited (PDP) to undertake a high-level contaminated land assessment (similar to a Preliminary Site Investigation [PSI]) of the properties located at (the northern section of) 451, 610, 614, 670 and 680 Muriwai Road, Waimauku ('the site'¹). PDP completed the PSI report for the site on 12 February 2021, which identified several potential contamination sources at discrete locations across the site including:

- : HAIL² Area 1 Potential impacts of various contaminants (including persistent organic pollutants) from historical horticultural activities (kumara crops) in the central south of the site (current paddocks between the workshop area and the "Kumara Shed");
- HAIL Area 2 Potential impacts of various contaminants from long-term storage of treated timber in the paddocks to the west of the workshop;
- : HAIL Area 3 Potential impacts of various contaminants (including persistent organic pollutants) from the sheep spray shower, holding/draining pens and exit races located near the woolshed and the potential historical storage of these chemicals in the woolshed itself;
- : HAIL Area 4 Potential hydrocarbon impacts from bulk storage of diesel and petrol in un-bunded aboveground storage tanks (ASTs) in the workshop area (including a recent spill from the diesel AST) and from fuel drums stored adjacent to the ASTs;
- : HAIL Area 5 Potential hydrocarbon impacts from the storage of old fuel drums in the workshop;

¹ As clarified in Mason Jackson's email dated 27 November 2020, while 614 and 680 Muriwai Road are currently owned by third parties, the client is considering acquiring these properties (to this extent, the assessment of these two properties had been limited to a desktop review). Mason Jackson's subsequent emails dated 29 April, 22, 23 and 29 July 2021 indicated that the client has since acquired 614 Muriwai Road and the proposed option 2 water reservoir site (reservoir 1) have been recently confirmed to be located adjacent to the south of Muriwai Road straddling 697 and (the southern section of) 451 Muriwai Road, which will need to be incorporated into an updated PSI report.

² The Hazardous Activities and Industries List (HAIL) is a compilation of activities and industries that are considered likely to cause land contamination resulting from hazardous substance use, storage or disposal. The HAIL is intended to identify most situations in New Zealand where hazardous substances could cause, and in many cases have caused, land contamination. The most recent version of the HAIL was published by the Ministry for the Environment (MfE) in 2011.

GOLF STRATEGY GROUP LTD - SAMPLING AND ANALYSIS PLAN FOR THE MURIWAI DOWNS GOLF PROJECT,

- : HAIL Area 5 Potential heavy metal and hydrocarbon impacts from the storage of fuel/chemicals and burning of refuse in (and with respect to the refuse; adjacent to) the main workshop building;
- Potential impacts of various contaminants from storage of chemicals in the hazardous chemicals storage shed located in the workshop area;
- Localised lead (and potentially arsenic) impacts from painted surfaces on current/historical houses/structures (including the former boarding house – Feature 5) constructed prior to the mid-1970s; and
- Asbestos/ACM impacts to soils from current/historical building materials that are observed to be in a deteriorated condition or could have been potentially removed (including from the former boarding house Feature 5) using inappropriate practises (and not to current standards).

The PSI report also concluded that the *Resource Management (National Environmental Standard for Assessing and Managing Contaminants in Soil to Protect Human Health) Regulations 2011* (NESCS) and its regulations apply to the piece of land where these potential contamination sources have been found, and would be triggered by the proposed activities anticipated to be undertaken in the future, which are expected to include: change of land-use (from rural to a combination of residential, rural residential, commercial or recreational) and soil disturbance.

A detailed site investigation (DSI) was recommended by PDP and requested by Mitchell Daysh Limited (email from Mason Jackson dated 20 January and 29 April 2021) to:

- Determine the nature and extent of impacts of the contaminants of potential concern (COPC) to ground (that is to be disturbed/developed, as indicated in the latest 'Current Water Supply & Storage Concept' and 'Golf Master Plan' as shown in Figure 1 and Appendix 1, respectively of the Project Description Update Muriwai Downs Golf Project [Mitchell Daysh, 5 July 2021]) as a result of these current/historical activities prior to undertaking any soil disturbance activities on the site; and
- : Incorporate the recently acquired 614 Muriwai Road property as well as the properties at 697 and (the southern section of) 451 Muriwai Road into the PSI report.

PDP has prepared this sampling and analysis plan (SAP) to formalise the DSI's scope of work.

2.0 DSI Objectives

The objectives of the DSI are to:

- Assess the likelihood of human health and environmental risk associated with the proposed soil disturbance through targeted soil sampling and comparison of analytical results against relevant guidelines/criteria; and
- Assess the requirements for potential contaminated land consents in relation to the NESCS and the Auckland Unitary Plan Operative in Part (AUP:OP) (Auckland Council, 2016).

3.0 DSI Scope of Work

The Ministry for the Environment's (MfE's) Contaminated Land Management Guidelines (CLMG, revised 2021) promote a nationally consistent approach to the investigation and assessment of contaminated land. The NESCS incorporates by reference the MfE's CLMG No.'s 1, 2 and 5. The proposed DSI has been scoped in accordance with the requirements of the MfE's CLMGs and the NESCS.

The investigation (including the reporting) will be overseen and certified by Suitably Qualified and Experienced Practitioners (SQEPs) and undertaken in accordance with the MfE's CLMG No. 1 and 5.

GOLF STRATEGY GROUP LTD - SAMPLING AND ANALYSIS PLAN FOR THE MURIWAI DOWNS GOLF PROJECT, WAIMAUKU

The proposed scope of work (SOW) is set out below and includes undertaking soil sampling to characterise the COPC (if any) in shallow soils (to a maximum depth of 3 m below ground level [bgl]) at discrete locations across the site and documenting the findings in a DSI report.

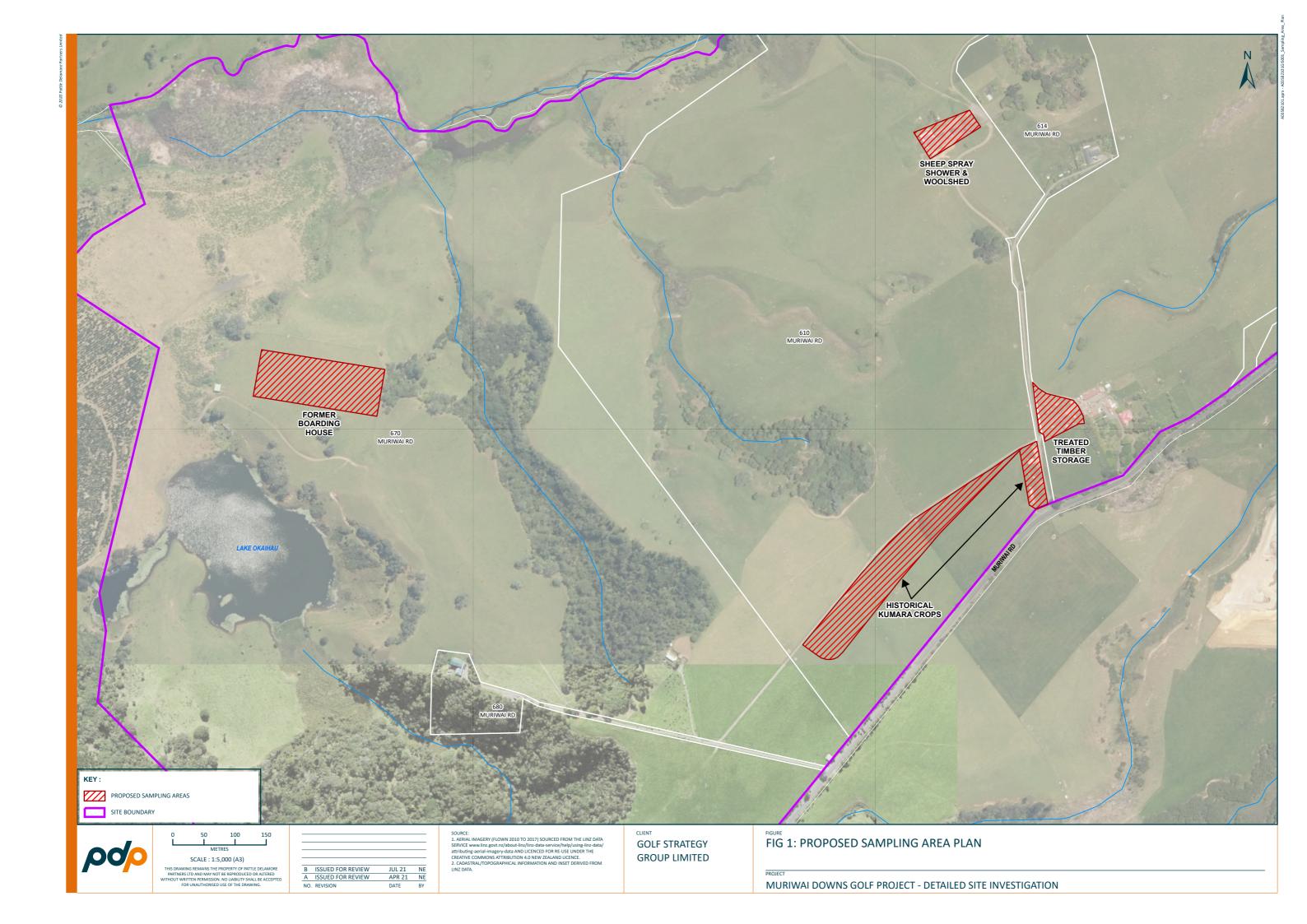
3.1 Stage 1 – Sampling & Analysis Plan and PSI Update

This SAP has been prepared to formalise the DSI's scope of work through the collection and analysis of soil samples to investigate the possible/probable 'source-pathway-receptor' linkages identified during the PSI completed in February 2021. This SAP and cost estimate may need to be refined if any additional possible/probable 'source-pathway-receptor' linkages are identified during the site walkover/interview of the recently acquired property at 614 Muriwai Road and the recently confirmed location of the water reservoir site (reservoir 1) straddling 697 and (the southern section of) 451 Muriwai Road.

We propose undertaking a site walkover of the property at 614, (the northeast corner of) 697 and (the southern section of) 451 Muriwai Road and interviewing its previous landowner/s (and/or other appropriate parties as identified by the previous owner or nominated representative) about their knowledge of past activities on the property. The findings of the site walkover and interview will be incorporated into the updated PSI. If any additional soil sampling is found to be required to further investigate any additional possible/probable 'source-pathway-receptor' linkages at these properties, we would be able to complete them while the resource consent application is being processed.

While onsite for the PSI site walkover/interview, we propose to also carry out the underground utility clearance work required for Stage 2.

3.2 Stage 2 – Fieldwork


The following SOW is proposed based on the PSI completed in February 2021³ and in accordance with the requirements set out in the MfE's CLMG No.5 (revised 2021):

- Based on the total area of the site to be disturbed/developed⁴ that intersects with the discrete areas across the site with potential contamination/HAIL sources⁵ (as shown in Figure 1), the MfE sampling guidelines recommend a minimum of 73 sampling locations. From our experience and understanding of the project, the following soil sampling and analysis programme is proposed:
 - Collection of soil samples from a total of 73 sampling locations within the discrete areas.
 - Soil samples will be collected:
 - From the ground surface (0-0.1 m bgl);
 - At changes to lithology (currently assumed to comprise of topsoil/fill and natural
 material) to approximately 0.2 m below the maximum depth to which construction
 excavation will likely occur (assumed, from the information provided, to be approximately
 ranging between 0 and 3 m bgl) (i.e. to a maximum depth of 3 m bgl at certain locations
 as shown in Table 1 below); and/or
 - At any horizons with stains and/or odours.

³ Which does not include any additional possible/probable 'source-pathway-receptor' linkages that may be identified during the site walkover/interview of the recently acquired property at 614 Muriwai Road and the recently confirmed location of the water reservoir site (reservoir 1) straddling 697 and (the southern section of) 451 Muriwai Road.

⁴ As indicated in the latest 'Golf Master Plan' as shown in Appendix 1 of the *Project Description Update – Muriwai Downs Golf Project* (Mitchell Daysh, 5 July 2021).

⁵ Including the areas where historical kumara crops (~18,200 m²); treated timber storage (~4,400 m²), sheep spray shower, holding/draining pens, exit races and woolshed (~3,900 m²); and the former boarding house (~11,500 m²) were/are located.

GOLF STRATEGY GROUP LTD - SAMPLING AND ANALYSIS PLAN FOR THE MURIWAI DOWNS GOLF PROJECT,

All soil samples will be couriered (with Chain of Custody documentation) to Hill Laboratories (Hills) in Hamilton for the analyses shown in Table 1 below (with the number of samples to be analysed as shown for the purposes of cost estimating):

Table 1: Sam	pling and I	Analysis Plan		
Sampling Area	Area (m²)	Sampling Locations	Analytes	Proposed Soil Disturbance Within Sampling Area ¹
Historical Kumara Crops	18,200	28 ²	7x [metals ³ and organochlorine pesticides (OCPs)]	Cuts ranging from 0 to a maximum of 2 m bgl for the large area and only fill for the small area. 27 locations to be hand augered to natural material (assumed to be at 0.2 m bgl) and 1 location to be hand augered to maximum cut depth (2 m bgl), assuming only natural soil samples are encountered during the shallow hand augers.
Treated Timber Storage	4,400	12	12x [metals ³ , OCPs, polycyclic aromatic hydrocarbons (PAHs), pentachlorophenol (PCP) and tributyltin (TBT)]	Small area of fill and no cuts. 12 locations to be hand augered to natural material (assumed to be at 0.2 m bgl).
Sheep Spray Shower & Woolshed	3,900	11	14x [metals³ and OCPs]⁴	Maximum cut to 1 m bgl. 11 locations to be hand augered to maximum cut depth (1 m bgl).
Former Boarding House	11,500	22	22x [metals ³ and presence/absence asbestos in soil (P/A AsbInS)] ⁵	Cuts ranging from 0 to a maximum of 3 m bgl. 21 locations to be hand augered to natural material (assumed to be at 0.3 m bgl) and 1 location to be hand augered to maximum cut depth (3 m bgl), assuming only natural soil samples are encountered during the shallow hand augers.

Notes:

- 1. As indicated in Mark Thawley's email dated 21 July 2021.
- 2. On the basis of the likely even distribution of COPC across the historical kumara crops area, the primary soil samples collected from the 28 surface locations will be combined into seven composite soil samples for analysis.
- Arsenic, cadmium, chromium, copper, lead, nickel and zinc.
- 4. Two soil samples (one each from the topsoil/fill and natural material horizon) at three targeted sampling locations (collected at and downgradient of the sheep spray shower and downgradient of the woolshed) and one soil sample (from the topsoil) at another eight systematic sampling locations (collected at regular intervals within the holding/draining pens and exit races).
- 5. One soil sample (from the topsoil/fill or natural material horizon, based on site observations) from each of the 22 systematic sampling locations at regular intervals within the former boarding house area. If asbestos is found to be present, the samples will also be analysed for semi-quantitative asbestos in soil (SQ AsbInS) we have provisionally allowed for asbestos to be present in 10 soil samples.

If unforeseen issues arise (e.g. additional sampling and/or analyses is required) based on field observations, and more time is likely to be required, we will discuss these with you and agree on an approach and expected costs prior to proceeding.

GOLF STRATEGY GROUP LTD - SAMPLING AND ANALYSIS PLAN FOR THE MURIWAI DOWNS GOLF PROJECT,

3.3 Stage 3 – Reporting

Our findings will be documented as a DSI report in accordance with the MfE's CLMG No.1 and will include an updated conceptual site model (CSM) to ensure that the potential pathways and receptors are considered.

The report will assess the likelihood of human health and environmental risk associated with the proposed change in land-use and soil disturbance by assessing the soil results against relevant guidelines/criteria. The tabulated results (included in the DSI report) will inform conclusions regarding whether there are any specialist soils handling and disposal requirements for the project – for example:

- Are measures required to protect the health of site workers, site neighbours and/or environmental receptors during the works?
- Should excess excavated soils be disposed of to a managed or licenced landfill, or is reuse of soils onsite a possibility (from a contaminated land perspective)?

The report will also provide recommendations relating to:

- : The requirement for contaminated land consents (under the NESCS and the AUP:OP); and
- Whether any further investigation work is necessary to inform site management and/or consenting and/or construction requirements (which will be scoped and costed for separately).

The DSI report will be provided electronically as a PDF document. Allowance has been made for minor formatting on the draft DSI report prior to issuing a final report (following receipt of feedback from the client).

4.0 Limitations

This document has been prepared by Pattle Delamore Partners Limited (PDP) on the basis of information provided by Golf Strategy Group Ltd and others (not directly contracted by PDP for the work), including Auckland Council, Mitchell Daysh Ltd and Muriwai Downs Ltd. PDP has not independently verified the provided information and has relied upon it being accurate and sufficient for use by PDP in preparing the document. PDP accepts no responsibility for errors or omissions in, or the currency or sufficiency of, the provided information.

This document has been prepared by PDP on the specific instructions of Golf Strategy Group Ltd for the limited purposes described in the report. PDP accepts no liability if the report is used for a different purpose or if it is used or relied on by any other person. Any such use or reliance will be solely at their own risk.

© 2021 Pattle Delamore Partners Limited.

Yours faithfully,

PATTLE DELAMORE PARTNERS LIMITED

Prepared by

Reviewed & Approved by

Stefan Yap

Service Leader - Contaminated Land

Erin Richards

Technical Director - Contaminated Land

Appendix E: COCs and Laboratory Reports

Hill Laboratories TRIED, TESTED AND TRUSTED

	TRIED, TESTE	ED and tru	ISTED	R J Hill Laboratories Limited Job No: Date Recv: 10-Aug-21 07:50 28 Duke Street Frankton 320 ² 26 7 4272
Quote l	No 109925			Hamilton 3240 New Zealand ZOI 4ZIZ
Primary	y Contact Stefan Yap		259737	T 0508 HILL LAB (44 555 2 Received by: Jonas Eyskens T +64 7 858 2000
Submit	ted By Tom Harvey		247841	E mail@hill-labs.co.nz W www.hill-laboratories.com
Client I	Name Pattle Delamor	e Partners Limite	d 59	3126742721
Address	PO Box 9528, Newmarke	et		CHAIN OF GUSTOUY REGURD
	Auckland 1149		ſ	Sent to Date & Time: 9/8/12
Phone_	09 523 6900 Mobile	0223144248		Hill Laboratories Name: Ton Hang
Email	tombane, oplo.	CO, NZ		Tick if you require COC to be emailed back Signature:
Charge	e To Pattle Delamore Par	tners Limited	59	Received at Date & Time:
Client Re	eference Muriwai			Hill Laboratories
Order No	A03582101			Name:
Result	Additional Mepons will be se	ent as specified below.		Signature: Temp:
Ema	ail Primary Contact 🗍 Email ail Other <u>Steannage</u>	Submitter Ema	ail Client	
Oth	er	V		
Dates of the Please in:	testing are not routinely included in the C form the laboratory if you would like this	Certificates of Analysis. information reported.		Sample & Analysis details checked
[[[]]	TIONAL INFORMATIO	N / KNOWN H	MARIES	Signature:
Quot	ed Sample Types			NOTE: The estimated turnaround time for the types and number of samples and analyses specified on this quote is by 4:30 pm, 5 working days following the day of receipt of the samples at the laboratory. Requested Reporting Date:
No.				
710.	Sample Name	Sample Date/Time	Sample Typ	
	Sample Name	Sample Date/Time	Sample Typ	De Tests Required
				HAR COORS
1	LJS_8501_0.1			HM7,0085
2	WS_5501_0.3 WS_5501_0.3			HAR COORS
2	WS_SSO1_0.1 WS_SSO1_0.3 WS_SSO1_0.8			Hald Cold AM7, OCPS Hold Cold
1 2 3 4	WS_SSO1_0.1 WS_SSO1_0.3 WS_SSO2_0.1 WS_SSO2_0.3			HM7, OCPS Hold Cold AM7, OCPS Hold Cold HM7, OCPS
1 2 3 4 5	WS_SSOZ_0.8 WS_SSOZ_0.8 WS_SSOZ_0.8			HM7, OCPS Hold Cold HM7, OCPS Hold Cold Hold Cold
1 2 3 4 5	WS_SSOZ_O.1 WS_SSOZ_O.1 WS_SSOZ_O.8 WS_SSOZ_O.8			HMZ, OCPS Hold Cold AMZ, OCPS Hold Cold Hold Cold Hold Cold
1 2 3 4 5 6 7	WS_SSOZ_0.8 WS_SSOZ_0.8 WS_SSOZ_0.8			HM7, OCPS Hold Cold AM7, OCPS Hold Cold Hold Cold Hold Cold Hold Cold AM7, OCPS

ANALYSIS REQUEST

10 65_5507_0,3

Hill Laboratories

	TRIED, TESTE	D AND TRUS	TED	R J Hill Laboratories Limited 28 Duke Street Frankton 3204 Private Bag 3205	
Quote	No 109925			Hamilton 3240 New Zealand	Office use only
Primar	y Contact Stefan Yap		200,0.	T 0508 HILL LAB (44 555 22) T +64 7 858 2000	(Job No)
Submi	tted By Tom Harvey		247841	E mail@hill-labs.co.nz W www.hill-laboratories.com	
Client	Name Pattle Delamore	e Partners Limited	59		STODY RECORD
Address	PO Box 9528, Newmarke	et		Gilliurgu	
	Auckland 1149			Sent to <u>Date</u> Hill Laboratories	e & Time: 9.8.21
Phone		0223144248		Tick if you require COC	10: Tom Harry
Email	ton harvey Opdo				nature: My]
	e To Pattle Delamore Part	tners Limited	59	Received at Date	e & Time:
Client Re	eference Muriwai			Hill Laboratories	ne:
Order N	Departs will be empiled to Pr	imary Contact by default.			nature:
Result	s To Additional Reports will be ser ail Primary Contact Email	nt as specified below.	Slient	Condition	Temp:
	ail Other Stelan you			Room Temp Chille	
Oth	testing are not routinely included in the Co	Pertificates of Analysis.		Sample & Analysis det	ails checked
Please in	form the laboratory if you would like this i	information reported.	W-V-V-)	Signature:	
ADD	ITIONAL INFORMATIO	YIN KUMUNUN IN	HILLS	Priority \(\subseteq \text{Low} \)	│ Normal ▼ High
Quot	ed Sample Types			day of receipt of the samples at the Requested Reporting Date:	
No.	Sample Name	Sample Date/Time Sa	mple Typ	ne Tests Required	
1	WS-SSO4-0.3	6,8.21	5	Hold Cold	
	1,15_5504_1.0	Recognition of the Control of the Co	. Constitution of the cons	Hold Cold	
	US_550S_0.1	Videnmedelmessesses	МААЛ-мерр-Нообу, пішто на дорга	HM7, OCP	5
	WS_5808_0.3	en cincinnos de ci	GERRAMAN AND AND AND AND AND AND AND AND AND A	Hold Cold	*
5	WS_SS05_1.0	Professional State of the State	Vally speakillioned grant was	Hold Colo	1
6	WS-8506-01	William Control of Con	100000000000000000000000000000000000000	Hm 7 Och	5
7	WS_5506_0.3	noted proper halfs for effective and the second	- marchine de la company de la	Hold Cold	
8	W5-5506-1.0	distribution of the state of th	on the second se	Hold Cold	
0			ŧ		
ع ا	WS_SSO7_0.1	vinning i Jamahaman and an and an and an an and an an and an	associated	Hard Colo	

ANALYSIS REQUEST

Ray 3

10

88/0_0

R J Hill Laboratories Limited TRIED, TESTED AND TRUSTED 28 Duke Street Frankton 3204 Private Bag 3205 109925 **Quote No** Hamilton 3240 New Zealand Office use only (Job No) 0508 HILL LAB (44 555 22) Primary Contact Stefan Yap 259737 +64 7 858 2000 E mail@hill-labs.co.nz Tom Harvey Submitted By 247841 W www.hill-laboratories.com Pattle Delamore Partners Limited **Client Name** 59 N OF GUSTODY REGORD Address PO Box 9528, Newmarket Auckland 1149 Sent to Date & Time: **Hill Laboratories** Mobile 0223144248 09 523 6900 Phone Name: Tick if you require COC Email MAINER DODO. CU. AZ to be emailed back Signature: Charge To Pattle Delamore Partners Limited 59 Received at Date & Time Client Reference Muriwai Hill Laboratories Name: Order No A03582101 Reports will be emailed to Primary Contact by default. Signature: Results To Additional Reports will be sent as specified below. Temp: 📗 Email Primary Contact 🔲 Email Suḥmitter 🗌 Email Client Condition was Opdo. co. we Email Other _Skd 🔲 Room Temp 🔲 Chilled 🔲 Frozen Other Dates of testing are not routinely included in the Certificates of Analysis. Sample & Analysis details checked Please inform the laboratory if you would like this information reported Signature: ADDITIONAL INFORMATION / KNOWN HAZARDS Priority Low Normal Urgent (ASAP, extra charge applies, please contact lab first) NOTE: The estimated turnaround time for the types and number of samples and analyses specified on this quote is by 4:30 pm, 5 working days following the day of receipt of the samples at the laboratory. Requested Reporting Date: **Quoted Sample Types** Soil (Soil) Sample Date/Time Sample Type Tests Required No. Sample Name 1 2 3 4 5 6 7 8 9

ANALYSIS REQUEST

Page 4

ANALYSIS REQUEST

R J Hill Laboratories Limited 28 Duke Street Frankton 3204 Private Bag 3205

Hamilton 3240 New Zealand

Office use only (Job No)

Primar	y Contact Stefan Yap		259737	T 0508 HILL LAB (44 555 22) (Job No T +64 7 858 2000	o)
Submi	tted By Tom Harvey			E mail@hill-labs.co.nz	
Client	Name Pattle Delamor	e Partners Limite	d 59		
Address	PO Box 9528, Newmarke	et		CHAIN OF CUSTODY RE	BUJU
	Auckland 1149			Sent to Date & Time: 9.8.2	\
Phone	09 523 6900 Mobile	022314424	8	Hill Laboratories Tick if you require COC Name: Name:	AVY
Email	tombarrey opap.			to be emailed back Signature:	4
	e To Pattle Delamore Par	tners Limited	59	Received at Date & Time:	
Client R	_{eference} Muriwai			Hill Laboratories	
Order N	Reports will be emailed to P	rimary Contact by default.		Signature:	
☐ Em	ail Other Steel on Additional Reports will be se ail Primary Contact Email ail Other	nt as specified below. Sybmitter 🔲 Ema	ail Client		Гетр:
Dates of	IGF testing are not routinely included in the C form the laboratory if you would like this	Pertificates of Analysis.		Sample & Analysis details checked	
	ITIONAL INFORMATIO		WARUS	Signature:	
Quot Soil (s	ed Sample Types			Priority Low Normal Urgent (ASAP, extra charge applies, please cont NOTE: The estimated turnaround time for the types and numb and analyses specified on this quote is by 4:30 pm, 5 working of day of receipt of the samples at the laboratory. Requested Reporting Date:	per of samples
No.	Sample Name	Sample Date/Time	Sample Type	e Tests Required	
1	US_5811_0.1	6,8.21	5_	AMJ OCP?	
2	W5_8811_03		Control per Cardinal Tree	14214 (0)4	
3	WS-SE11_1.0		GHARAJIANO-PROFENOR	Hold Cold	
4		a.e. a.e. or of the delay of th	ngen á dá víðiðren vene í Sölöli	HUZ PART PERSON	**
5	77_5501_0,1	and a making a management of the second	ophymian society and society a	187 PAR, PCD TBT	
6	TT_SSO1_072		e (Appliance) and the shoot devices of the	Hold Cold	
7	T-5502_0.\	and the second s	mpG(s)=amp_Appa-poolininoocco	HMZ, PAR, PCP, TBT	
8	T 58020.2		OLIZAN PRIMATE VINANTALIA (I.O.)	Hold Cold	
9	75503.0.1	White the state of	WATER WOOD AND THE CONTRACT OF	AMZ PANS POPUTBY	
10		1		Hald (0/d)	

Pay 5

28 Duke Street Frankton 3204 Private Bag 3205 109925 Hamilton 3240 New Zealand Office use only **Quote No** (Job No) 0508 HILL LAB (44 555 22) Primary Contact Stefan Yap 259737 +64 7 858 2000 Ε mail@hill-labs.co.nz 247841 Submitted By Tom Harvey www.hill-laboratories.com Pattle Delamore Partners Limited 59 **Client Name** OF GUSTODY REGURD Address PO Box 9528, Newmarket Auckland 1149 Date & Time: **Hill Laboratories** 09 523 6900 Mobile Phone Name: Tick if you require COC to be emailed back Email Signature: Charge To Pattle Delamore Partners Limited 59 Received at Date & Time. Client Reference Muriwai Hill Laboratories Name: Order No A03582101 Reports will be emailed to Primary Contact by default. Signature: Results To Additional Reports will be sent as specified below. Temp: Condition Email Other Room Temp 🔲 Chilled 🔲 Frozen Other Dates of testing are not routinely included in the Certificates of Analysis. Sample & Analysis details checked Please inform the laboratory if you would like this information reported. Signature: ADDITIONAL INFORMATION / KNOWN HAZARDS **▼** High Priority Low Normal Urgent (ASAP, extra charge applies, please contact lab first) NOTE: The estimated turnaround time for the types and number of samples and analyses specified on this quote is by 4:30 pm, 5 working days following the day of receipt of the samples at the laboratory. Requested Reporting Date: **Quoted Sample Types** Soil (Soil) Sample Date/Time Sample Type Tests Required No. Sample Name 7.8.4 1 2 3 4 5 6 7 8 9 10

ANALYSIS REQUEST

R J Hill Laboratories Limited

R J Hill Laboratories Limited 28 Duke Street Frankton 3204 Private Bag 3205

Hamilton 3240 New Zealand

T **0508 HILL LAB** (44 555 22) T +64 7 858 2000

E mail@hill-labs.co.nzW www.hill-laboratories.com

Job Information Summary

Page 1 of 4

Client: Pattle Delamore Partners Limited

Contact: Stefan Yap

C/- Pattle Delamore Partners Limited

PO Box 9528 Newmarket Auckland 1149 **Lab No:** 2674272

Date Registered: 10-Aug-2021 2:44 pm

Priority: High
Quote No: 109925
Order No: A03582101
Client Reference: Muriwai

Add. Client Ref:

Submitted By: Tom Harvey

Charge To: Pattle Delamore Partners Limited 18-Aug-2021 4:30 pm

Samples

No	Sample Name	Sample Type	Containers	Tests Requested
1	WS_SS01_0.1 06-Aug-2021	Soil	cGSoil	Heavy Metals, Screen Level; Organochlorine Pesticides Screening in Soil
2	WS_SS01_0.3 06-Aug-2021	Soil	cGSoil	Heavy Metals, Screen Level; Organochlorine Pesticides Screening in Soil
3	WS_SS01_0.8 06-Aug-2021	Soil	cGSoil	Hold Cold
4	WS_SS02_0.1 06-Aug-2021	Soil	cGSoil	Heavy Metals, Screen Level; Organochlorine Pesticides Screening in Soil
5	WS_SS02_0.3 06-Aug-2021	Soil	cGSoil	Hold Cold
6	WS_SS02_0.8 06-Aug-2021	Soil	cGSoil	Hold Cold
7	WS_SS03_0.1 06-Aug-2021	Soil	cGSoil	Heavy Metals, Screen Level; Organochlorine Pesticides Screening in Soil
8	WS_SS03_0.3 06-Aug-2021	Soil	cGSoil	Heavy Metals, Screen Level; Organochlorine Pesticides Screening in Soil
9	WS_SS03_1.0 06-Aug-2021	Soil	cGSoil	Hold Cold
10	WS_SS04_0.1 06-Aug-2021	Soil	cGSoil	Heavy Metals, Screen Level; Organochlorine Pesticides Screening in Soil
11	WS_SS04_0.3 06-Aug-2021	Soil	cGSoil	Hold Cold
12	WS_SS04_1.0 06-Aug-2021	Soil	cGSoil	Hold Cold
13	WS_SS05_0.1 06-Aug-2021	Soil	cGSoil	Heavy Metals, Screen Level; Organochlorine Pesticides Screening in Soil
14	WS_SS05_0.3 06-Aug-2021	Soil	cGSoil	Hold Cold
15	WS_SS05_1.0 06-Aug-2021	Soil	cGSoil	Hold Cold
16	WS_SS06_0.1 06-Aug-2021	Soil	cGSoil	Heavy Metals, Screen Level; Organochlorine Pesticides Screening in Soil
17	WS_SS06_0.3 06-Aug-2021	Soil	cGSoil	Hold Cold
18	WS_SS06_1.0 06-Aug-2021	Soil	cGSoil	Hold Cold
19	WS_SS07_0.1 06-Aug-2021	Soil	cGSoil	Heavy Metals, Screen Level; Organochlorine Pesticides Screening in Soil
20	WS_SS07_0.3 06-Aug-2021	Soil	cGSoil	Hold Cold
21	WS_SS07_1.0 06-Aug-2021	Soil	cGSoil	Hold Cold
22	WS_SS08_0.1 06-Aug-2021	Soil	cGSoil	Heavy Metals, Screen Level; Organochlorine Pesticides Screening in Soil
23	WS_SS08_0.3 06-Aug-2021	Soil	cGSoil	Hold Cold
24	WS_SS08_1.0 06-Aug-2021	Soil	cGSoil	Hold Cold
25	WS_SS09_0.1 06-Aug-2021	Soil	cGSoil	Heavy Metals, Screen Level; Organochlorine Pesticides Screening in Soil
26	WS_SS09_0.3 06-Aug-2021	Soil	cGSoil	Heavy Metals, Screen Level; Organochlorine Pesticides Screening in Soil
27	WS_SS09_1.0 06-Aug-2021	Soil	cGSoil	Hold Cold
28	WS_SS10_0.1 06-Aug-2021	Soil	cGSoil	Heavy Metals, Screen Level; Organochlorine Pesticides Screening in Soil
29	WS_SS10_0.3 06-Aug-2021	Soil	cGSoil	Hold Cold

Lab No: 2674272 Hill Laboratories Page 1 of 4

Sam	ples			
No	Sample Name	Sample Type	Containers	Tests Requested
30	WS_SS10_1.0 06-Aug-2021	Soil	cGSoil	Hold Cold
31	WS_SS11_0.1 06-Aug-2021	Soil	cGSoil	Heavy Metals, Screen Level; Organochlorine Pesticides Screening in Soil
32	WS_SS11_0.3 06-Aug-2021	Soil	cGSoil	Hold Cold
33	WS_SS11_1.0 06-Aug-2021	Soil	cGSoil	Hold Cold
34	TT_SS01_0.1 06-Aug-2021	Soil	cGSoil	Heavy Metals, Screen Level; Polycyclic Aromatic Hydrocarbons Screening in Soil; Pentachlorophenol Screening in Soil by LCMSMS; Tributyl Tin Trace in Soil samples by GCMS; Organochlorine Pesticides Screening in Soil
35	TT_SS01_0.2 06-Aug-2021	Soil	cGSoil	Hold Cold
36	TT_SS02_0.1 06-Aug-2021	Soil	cGSoil	Heavy Metals, Screen Level; Polycyclic Aromatic Hydrocarbons Screening in Soil; Pentachlorophenol Screening in Soil by LCMSMS; Tributyl Tin Trace in Soil samples by GCMS; Organochlorine Pesticides Screening in Soil
37	TT_SS02_0.2 06-Aug-2021	Soil	cGSoil	Hold Cold
38	TT_SS03_0.1 06-Aug-2021	Soil	cGSoil	Heavy Metals, Screen Level; Polycyclic Aromatic Hydrocarbons Screening in Soil; Pentachlorophenol Screening in Soil by LCMSMS; Tributyl Tin Trace in Soil samples by GCMS; Organochlorine Pesticides Screening in Soil
39	TT_SS03_0.2 06-Aug-2021	Soil	cGSoil	Hold Cold
40	TT_SS04_0.1 06-Aug-2021	Soil	cGSoil	Heavy Metals, Screen Level; Polycyclic Aromatic Hydrocarbons Screening in Soil; Pentachlorophenol Screening in Soil by LCMSMS; Tributyl Tin Trace in Soil samples by GCMS; Organochlorine Pesticides Screening in Soil
41	TT_SS04_0.2 06-Aug-2021	Soil	cGSoil	Hold Cold
42	TT_SS05_0.1 06-Aug-2021	Soil	cGSoil	Heavy Metals, Screen Level; Polycyclic Aromatic Hydrocarbons Screening in Soil; Pentachlorophenol Screening in Soil by LCMSMS; Tributyl Tin Trace in Soil samples by GCMS; Organochlorine Pesticides Screening in Soil
43	TT_SS06_0.2 06-Aug-2021	Soil	cGSoil	Hold Cold
44	TT_SS07_0.1 06-Aug-2021	Soil	cGSoil	Heavy Metals, Screen Level; Polycyclic Aromatic Hydrocarbons Screening in Soil; Pentachlorophenol Screening in Soil by LCMSMS; Tributyl Tin Trace in Soil samples by GCMS; Organochlorine Pesticides Screening in Soil
45	TT_SS07_0.2 06-Aug-2021	Soil	cGSoil	Hold Cold
46	TT_SS08_0.1 06-Aug-2021	Soil	cGSoil	Heavy Metals, Screen Level; Polycyclic Aromatic Hydrocarbons Screening in Soil; Pentachlorophenol Screening in Soil by LCMSMS; Tributyl Tin Trace in Soil samples by GCMS; Organochlorine Pesticides Screening in Soil
47	TT_SS08_0.2 06-Aug-2021	Soil	cGSoil	Hold Cold
48	TT_SS09_0.1 06-Aug-2021	Soil	cGSoil	Heavy Metals, Screen Level; Polycyclic Aromatic Hydrocarbons Screening in Soil; Pentachlorophenol Screening in Soil by LCMSMS; Tributyl Tin Trace in Soil samples by GCMS; Organochlorine Pesticides Screening in Soil
49	TT_SS09_0.2 06-Aug-2021	Soil	cGSoil	Hold Cold
52	TT_SS10_0.1 06-Aug-2021	Soil	cGSoil	Heavy Metals, Screen Level; Polycyclic Aromatic Hydrocarbons Screening in Soil; Pentachlorophenol Screening in Soil by LCMSMS; Tributyl Tin Trace in Soil samples by GCMS; Organochlorine Pesticides Screening in Soil
53	TT_SS10_0.2 06-Aug-2021	Soil	cGSoil	Hold Cold
54	TT_SS11_0.1 06-Aug-2021	Soil	cGSoil	Heavy Metals, Screen Level; Polycyclic Aromatic Hydrocarbons Screening in Soil; Pentachlorophenol Screening in Soil by LCMSMS; Tributyl Tin Trace in Soil samples by GCMS; Organochlorine Pesticides Screening in Soil
55	TT_SS11_0.2 06-Aug-2021	Soil	cGSoil	Hold Cold

Samp	oles			
No	Sample Name	Sample Type	Containers	Tests Requested
56	TT_SS12_0.1 06-Aug-2021	Soil	cGSoil	Heavy Metals, Screen Level; Polycyclic Aromatic Hydrocarbons Screening in Soil; Pentachlorophenol Screening in Soil by LCMSMS; Tributyl Tin Trace in Soil samples by GCMS; Organochlorine Pesticides Screening in Soil
57	TT_SS12_0.2 06-Aug-2021	Soil	cGSoil	Hold Cold
58	TT_SS05_0.2 06-Aug-2021	Soil	cGSoil	
59	TT_SS06_0.1 06-Aug-2021	Soil	cGSoil	Heavy Metals, Screen Level; Organochlorine Pesticides Screening in Soil; Polycyclic Aromatic Hydrocarbons Screening in Soil; Pentachlorophenol Screening in Soil by LCMSMS; Tributyl Tin Trace in Soil samples by GCMS

Summary of Methods

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively simple matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis. A detection limit range indicates the lowest and highest detection limits in the associated suite of analytes. A full listing of compounds and detection limits are available from the laboratory upon request. Unless otherwise indicated, analyses were performed at Hill Laboratories, 28 Duke Street, Frankton, Hamilton 3204.

Sample Type: Soil			
Test	Method Description	Default Detection Limit	Sample No
Environmental Solids Sample Drying	Air dried at 35°C Used for sample preparation. May contain a residual moisture content of 2-5%.	-	1-2, 4, 7-8, 10, 13, 16, 19, 22, 25-26, 28, 31, 34, 36, 38, 40, 42, 44, 46, 48, 52, 54, 56, 59
Soil Prep Dry for Organics,Trace	Air dried at 35°C Used for sample preparation. May contain a residual moisture content of 2-5%.	-	34, 36, 38, 40, 42, 44, 46, 48, 52, 54, 56, 59
Total of Reported PAHs in Soil	Sonication extraction, GC-MS analysis. In-house based on US EPA 8270.	0.03 mg/kg dry wt	34, 36, 38, 40, 42, 44, 46, 48, 52, 54, 56, 59
Heavy Metals, Screen Level	Dried sample, < 2mm fraction. Nitric/Hydrochloric acid digestion US EPA 200.2. Complies with NES Regulations. ICP-MS screen level, interference removal by Kinetic Energy Discrimination if required.	0.10 - 4 mg/kg dry wt	1-2, 4, 7-8, 10, 13, 16, 19, 22, 25-26, 28, 31, 34, 36, 38, 40, 42, 44, 46, 48, 52, 54, 56, 59
Organochlorine Pesticides Screening in Soil	Sonication extraction, GC-ECD analysis. Tested on as received sample. In-house based on US EPA 8081.	0.010 - 0.06 mg/kg dry wt	1-2, 4, 7-8, 10, 13, 16, 19, 22, 25-26, 28, 31, 34, 36, 38, 40, 42, 44, 46, 48, 52, 54, 56, 59
Polycyclic Aromatic Hydrocarbons Screening in Soil	Sonication extraction, GC-MS analysis. Tested on as received sample. In-house based on US EPA 8270.	0.002 - 0.05 mg/kg dry wt	34, 36, 38, 40, 42, 44, 46, 48, 52, 54, 56, 59
Pentachlorophenol Screening in Soil by LCMSMS	Solvent extraction, LC-MS/MS analysis. Tested on dried sample. In-house.	0.010 mg/kg dry wt	34, 36, 38, 40, 42, 44, 46, 48, 52, 54, 56, 59
Tributyl Tin Trace in Soil samples by GCMS	Solvent extraction, derivitisation, GC-MS analysis. Tested on dried sample. In-house.	0.003 - 0.007 mg/kg dry wt	34, 36, 38, 40, 42, 44, 46, 48, 52, 54, 56, 59

Sample Type: Soil			
Test	Method Description	Default Detection Limit	Sample No
Dry Matter (Env)	Dried at 103°C for 4-22hr (removes 3-5% more water than air dry), gravimetry. (Free water removed before analysis, nonsoil objects such as sticks, leaves, grass and stones also removed). US EPA 3550.	0.10 g/100g as rcvd	1-2, 4, 7-8, 10, 13, 16, 19, 22, 25-26, 28, 31, 34, 36, 38, 40, 42, 44, 46, 48, 52, 54, 56, 59
Benzo[a]pyrene Potency Equivalency Factor (PEF) NES	BaP Potency Equivalence calculated from; Benzo(a) anthracene x 0.1 + Benzo(b)fluoranthene x 0.1 + Benzo(j) fluoranthene x 0.1 + Benzo(a) pyrene x 1.0 + Chrysene x 0.01 + Dibenzo(a,h)anthracene x 1.0 + Fluoranthene x 0.01 + Indeno(1,2,3-c,d)pyrene x 0.1. Ministry for the Environment. 2011. Methodology for Deriving Standards for Contaminants in Soil to Protect Human Health. Wellington: Ministry for the Environment.	0.002 mg/kg dry wt	34, 36, 38, 40, 42, 44, 46, 48, 52, 54, 56, 59
Benzo[a]pyrene Toxic Equivalence (TEF)	Benzo[a]pyrene Toxic Equivalence (TEF) calculated from; Benzo[a]pyrene x 1.0 + Benzo(a)anthracene x 0.1 + Benzo(b)fluoranthene x 0.1 + Benzo(k)fluoranthene x 0.1 + Chrysene x 0.01 + Dibenzo(a,h)anthracene x 1.0 + Indeno(1,2,3-c,d)pyrene x 0.1. Guidelines for assessing and managing contaminated gasworks sites in New Zealand (GMG) (MfE, 1997).	0.002 mg/kg dry wt	34, 36, 38, 40, 42, 44, 46, 48, 52, 54, 56, 59

T 0508 HILL LAB (44 555 22) +64 7 858 2000 E mail@hill-labs.co.nz W www.hill-laboratories.com

Certificate of Analysis

Page 1 of 9

Client: Contact: Pattle Delamore Partners Limited

Stefan Yap

C/- Pattle Delamore Partners Limited

PO Box 9528 Newmarket Auckland 1149 Lab No: 2674272 10-Aug-2021 **Date Received:** 17-Aug-2021 **Date Reported: Quote No:** 109925 **Order No:** A03582101 **Client Reference:** Muriwai Submitted By: Tom Harvey

Sample Type: Soil						
	Sample Name:	WS_SS01_0.1	WS_SS01_0.3	WS_SS02_0.1	WS_SS03_0.1	WS_SS03_0.3
		06-Aug-2021	06-Aug-2021	06-Aug-2021	06-Aug-2021	06-Aug-2021
1 1 1 1 7 1	Lab Number:	2674272.1	2674272.2	2674272.4	2674272.7	2674272.8
Individual Tests	Ţ			1		
Dry Matter	g/100g as rcvd	78	82	66	66	84
Heavy Metals, Screen Level						
Total Recoverable Arsenic	mg/kg dry wt	2	3	7	8	2
Total Recoverable Cadmium	mg/kg dry wt	0.11	< 0.10	< 0.10	0.11	< 0.10
Total Recoverable Chromium	mg/kg dry wt	8	8	15	10	8
Total Recoverable Copper	mg/kg dry wt	34	6	18	27	5
Total Recoverable Lead	mg/kg dry wt	7.2	9.4	18.3	32	11.6
Total Recoverable Nickel	mg/kg dry wt	5	2	5	3	< 2
Total Recoverable Zinc	mg/kg dry wt	109	33	139	68	20
Organochlorine Pesticides S	creening in Soil					
Aldrin	mg/kg dry wt	< 0.013	< 0.013	< 0.015	< 0.015	< 0.012
alpha-BHC	mg/kg dry wt	< 0.013	< 0.013	< 0.015	< 0.015	< 0.012
beta-BHC	mg/kg dry wt	< 0.013	< 0.013	< 0.015	< 0.015	< 0.012
delta-BHC	mg/kg dry wt	< 0.013	< 0.013	< 0.015	< 0.015	< 0.012
gamma-BHC (Lindane)	mg/kg dry wt	< 0.013	< 0.013	< 0.015	< 0.015	< 0.012
cis-Chlordane	mg/kg dry wt	< 0.013	< 0.013	< 0.015	< 0.015	< 0.012
trans-Chlordane	mg/kg dry wt	< 0.013	< 0.013	< 0.015	< 0.015	< 0.012
2,4'-DDD	mg/kg dry wt	< 0.013	< 0.013	< 0.015	< 0.015	< 0.012
4,4'-DDD	mg/kg dry wt	< 0.013	< 0.013	< 0.015	< 0.015	< 0.012
2,4'-DDE	mg/kg dry wt	< 0.013	< 0.013	< 0.015	< 0.015	< 0.012
4,4'-DDE	mg/kg dry wt	< 0.013	< 0.013	< 0.015	< 0.015	< 0.012
2,4'-DDT	mg/kg dry wt	< 0.013	< 0.013	< 0.015	< 0.015	< 0.012
4,4'-DDT	mg/kg dry wt	< 0.013	< 0.013	< 0.015	< 0.015	< 0.012
Total DDT Isomers	mg/kg dry wt	< 0.08	< 0.08	< 0.09	< 0.09	< 0.07
Dieldrin	mg/kg dry wt	< 0.013	< 0.013	< 0.015	< 0.015	< 0.012
Endosulfan I	mg/kg dry wt	< 0.013	< 0.013	< 0.015	< 0.015	< 0.012
Endosulfan II	mg/kg dry wt	< 0.013	< 0.013	< 0.015	< 0.015	< 0.012
Endosulfan sulphate	mg/kg dry wt	< 0.013	< 0.013	< 0.015	< 0.015	< 0.012
Endrin	mg/kg dry wt	< 0.013	< 0.013	< 0.015	< 0.015	< 0.012
Endrin aldehyde	mg/kg dry wt	< 0.013	< 0.013	< 0.015	< 0.015	< 0.012
Endrin ketone	mg/kg dry wt	< 0.013	< 0.013	< 0.015	< 0.015	< 0.012
Heptachlor	mg/kg dry wt	< 0.013	< 0.013	< 0.015	< 0.015	< 0.012
Heptachlor epoxide	mg/kg dry wt	< 0.013	< 0.013	< 0.015	< 0.015	< 0.012
Hexachlorobenzene	mg/kg dry wt	< 0.013	< 0.013	< 0.015	< 0.015	< 0.012
Methoxychlor	mg/kg dry wt	< 0.013	< 0.013	< 0.015	< 0.015	< 0.012

Sample Name	Sample Type: Soil						
Individual Tests Dry Matter g/100g as roval 68 79 75 75 82			06-Aug-2021	06-Aug-2021	06-Aug-2021	06-Aug-2021	
Dry Matter	Individual Tests	Lab Number:	2074272.10	2014212.13	2074272.10	20/42/2.19	2014212.22
Heavy Metals, Screen Level Total Recoverable Arsanic mg/kg dry wt 0.17 < 0.10 0.17 0.12 < 0.10 1.14 0.17 0.12 < 0.10 1.14 0.17 0.12 < 0.10 1.14 0.17 0.12 < 0.10 1.14 0.17 0.12 < 0.10 1.14 0.17 0.12 < 0.10 1.14 0.17 0.12 < 0.10 0.17 0.12 < 0.10 0.17 0.12 < 0.10 0.17 0.12 < 0.10 0.17 0.12 < 0.10 0.17 0.12 < 0.10 0.17 0.12 < 0.10 0.17 0.12 < 0.10 0.17 0.12 < 0.10 0.17 0.12 < 0.10 0.17 0.12 < 0.10 0.17 0.12 < 0.10 0.17 0.12 < 0.10 0.17 0.12 < 0.10 0.17 0.12 < 0.10 0.17 0.12 < 0.10 0.17 0.12 0.17 0.12 0.17 0.17 0.12 0.17 0.12 0.17 0.12 0.17 0.17 0.12 0.17 0.17 0.12 0.17 0.17 0.12 0.17 0.17 0.12 0.17 0.17 0.12 0.17 0.17 0.12 0.17 0.17 0.17 0.12 0.17 0.17 0.12 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0		g/100g as royd	68	70	75	75	82
Total Recoverable Assenic mg/kg dry w 72		9/1009 as 1044		13	10	7.5	02
Total Recoverable Cadmium mg/kg dry wt 14	•	manufication conti	70	6	6	0	4
Total Recoverable Chromium mg/kg dry wt 14		- ,					
Total Recoverable Copper							
Total Recoverable Lead mg/kg dry wt 32 7.0 6.4 6.9 8.7 Total Recoverable Nickel mg/kg dry wt 4 <2 6 6 6 3 Total Recoverable Nickel mg/kg dry wt 97 35 69 69 31 Total Recoverable Nickel mg/kg dry wt 97 35 69 69 31 Total Recoverable Nickel mg/kg dry wt 97 35 69 69 31 Total Recoverable Nickel mg/kg dry wt 97 35 69 69 31 Total Recoverable Nickel mg/kg dry wt 0.015 0.013 0.013 0.013 0.012 Total Recoverable Nickel mg/kg dry wt 0.015 0.013 0.013 0.013 0.013 0.012 Detes-BHC mg/kg dry wt 0.015 0.013 0.013 0.013 0.012 Detes-BHC mg/kg dry wt 0.015 0.013 0.013 0.013 0.012 Detes-BHC mg/kg dry wt 0.015 0.013 0.013 0.013 0.012 Detes-BHC mg/kg dry wt 0.015 0.013 0.013 0.013 0.012 Detes-BHC mg/kg dry wt 0.015 0.013 0.013 0.013 0.012 Detes-BHC mg/kg dry wt 0.015 0.013 0.013 0.013 0.012 Detes-BHC mg/kg dry wt 0.015 0.013 0.013 0.013 0.012 Detes-BHC mg/kg dry wt 0.015 0.013 0.013 0.013 0.012 Detes-BHC mg/kg dry wt 0.015 0.013 0.013 0.013 0.012 Detes-BHC mg/kg dry wt 0.015 0.013 0.013 0.013 0.012 Detes-BHC mg/kg dry wt 0.015 0.013 0.013 0.013 0.012 Detes-BHC mg/kg dry wt 0.015 0.013 0.013 0.013 0.012 Detes-BHC mg/kg dry wt 0.015 0.013 0.013 0.013 0.012 Detes-BHC mg/kg dry wt 0.015 0.013 0.013 0.013 0.012 Detes-BHC mg/kg dry wt 0.015 0.013 0.013 0.013 0.012 Detes-BHC mg/kg dry wt 0.015 0.013 0.013 0.013 0.012 Detes-BHC mg/kg dry wt 0.015 0.013 0.013 0.013 0.012 Detes-BHC mg/kg dry wt 0.015 0.013 0.013 0.013 0.012 Detes-BHC mg/kg dry wt 0.015 0.013 0.013 0.013 0.012 Detes-BHC mg/kg dry wt 0.015 0.013 0.013 0.013 0.013 0.012 Detes-BHC mg/kg dry wt 0.015 0.013 0.013 0.013 0.013 0.012 Detes-BHC mg/kg dry wt 0.015 0.013 0.							
Total Recoverable Nickel mg/kg dry w 4 <2 6 6 3 3 3 5 69 69 31 31 31 32 35 69 69 31 31 32 35 69 69 31 31 32 33 33 34 34 34 34 34	• • • • • • • • • • • • • • • • • • • •	- ,		_			
Total Recoverable Zinc							
Organochlorine Pesticides Screening in Soil Aldrin mg/kg dry wt < 0.015 < 0.013 < 0.013 < 0.013 < 0.012					_		
Addrin		- 0 0 ,		00	00	00	01
alpha-BHC			< 0.015	< 0.013	< 0.013	< 0.013	< 0.012
beta-BHC							
delta-BHC mg/kg dry wt < 0.015 < 0.013 < 0.013 < 0.013 < 0.012 gamma-BHC (Lindane) mg/kg dry wt < 0.015 < 0.013 < 0.013 < 0.013 < 0.013 < 0.012 < 0.015 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.012 < 0.015 < 0.013 < 0.013 < 0.013 < 0.013 < 0.012 < 0.015 < 0.015 < 0.013 < 0.013 < 0.013 < 0.013 < 0.012 < 0.015 < 0.013 < 0.013 < 0.013 < 0.012 < 0.015 < 0.013 < 0.013 < 0.013 < 0.013 < 0.012 < 0.015 < 0.015 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.012 < 0.015 < 0.015 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.012 < 0.015 < 0.015 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.012 < 0.015 < 0.015 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.012 < 0.015 < 0.015 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.012 < 0.015 < 0.015 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.012 < 0.015 < 0.015 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.012 < 0.015 < 0.015 < 0.013 < 0.013 < 0.013 < 0.013 < 0.012 < 0.013 < 0.013 < 0.013 < 0.012 < 0.015 < 0.015 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.012 < 0.015 < 0.015 < 0.013 < 0.013 < 0.013 < 0.013 < 0.012 < 0.013 < 0.013 < 0.013 < 0.012 < 0.013 < 0.013 < 0.013 < 0.013 < 0.012 < 0.013 < 0.013 < 0.013 < 0.013 < 0.012 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.012 < 0.013 < 0.013 < 0.013 < 0.013 < 0.012 < 0.013 < 0.013 < 0.013 < 0.013 < 0.012 < 0.013 < 0.013 < 0.013 < 0.013 < 0.012 < 0.013 < 0.013 < 0.013 < 0.013 < 0.012 < 0.013 < 0.013 < 0.013 < 0.012 < 0.012 < 0.013 < 0.013 < 0.013 < 0.013 < 0.012 < 0.012 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.012 < 0.012 < 0.013 < 0.013 < 0.013 < 0.013 < 0.012 < 0.012 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013	•	- ,					
gamma-BHC (Lindane) mg/kg dry wt < 0.015 < 0.013 < 0.013 < 0.013 < 0.013 < 0.012							
cis-Chlordane mg/kg dry wt trans-Chlordane < 0.015 < 0.013 < 0.013 < 0.013 < 0.013 < 0.012 trans-Chlordane mg/kg dry wt wt < 0.015 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.012 < 0.012 < 0.012 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.012 < 0.012 < 0.012 < 0.014 < 0.012 < 0.012 < 0.012 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 <							
trans-Chlordane mg/kg dry wt 2,0.015							
2.4*-DDD mg/kg dry wt < 0.015 < 0.013 < 0.013 < 0.013 < 0.012 4.4*-DDD mg/kg dry wt < 0.015							
4,4*DDD mg/kg dry wt < 0.015							
2.4'-DDE mg/kg dry wt < 0.015		0 0 ,					
4,4-DDE mg/kg dry wt < 0.015							
2,4'-DDT mg/kg dry wt < 0.015		0 0 ,					
4.4-DDT mg/kg dry wt < 0.015							
Total DDT Isomers							
Dieldrin	<u>'</u>						
Endosulfan I							
Endosulfan II	Endosulfan I						< 0.012
Endrin mg/kg dry wt < 0.015 < 0.013 < 0.013 < 0.013 < 0.012	Endosulfan II		< 0.015	< 0.013	< 0.013	< 0.013	< 0.012
Endrin mg/kg dry wt < 0.015 < 0.013 < 0.013 < 0.013 < 0.012	Endosulfan sulphate	mg/kg dry wt			< 0.013	< 0.013	< 0.012
Endrin ketone	Endrin	mg/kg dry wt	< 0.015	< 0.013	< 0.013	< 0.013	< 0.012
Heptachlor mg/kg dry wt < 0.015 < 0.013 < 0.013 < 0.013 < 0.012 Heptachlor epoxide mg/kg dry wt < 0.015 < 0.013 < 0.013 < 0.013 < 0.013 < 0.012 Hexachlorobenzene mg/kg dry wt < 0.015 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.012 Hexachlorobenzene mg/kg dry wt < 0.015 < 0.013 < 0.013 < 0.013 < 0.013 < 0.012 Methoxychlor mg/kg dry wt < 0.015 < 0.013 < 0.013 < 0.013 < 0.013 < 0.012 Sample Name: WS_SS09_0.1 WS_SS09_0.3 WS_SS10_0.1 WS_SS11_0.1 TT_SS01_0.1 106-Aug-2021 06-Aug-2021 06-Aug-2021 06-Aug-2021 06-Aug-2021 106-Aug-2021 06-Aug-2021 06-Aug-2021 06-Aug-2021 06-Aug-2021 106-Aug-2021 06-Aug-2021 06-Aug-2021 10	Endrin aldehyde	mg/kg dry wt	< 0.015	< 0.013	< 0.013	< 0.013	< 0.012
Heptachlor epoxide	Endrin ketone	mg/kg dry wt	< 0.015	< 0.013	< 0.013	< 0.013	< 0.012
Hexachlorobenzene mg/kg dry wt < 0.015 < 0.013 < 0.013 < 0.013 < 0.012	Heptachlor	mg/kg dry wt	< 0.015	< 0.013	< 0.013	< 0.013	< 0.012
Methoxychlor mg/kg dry wt < 0.015 < 0.013 < 0.013 < 0.013 < 0.013 < 0.012	Heptachlor epoxide	mg/kg dry wt	< 0.015	< 0.013	< 0.013	< 0.013	< 0.012
Sample Name: WS_SS09_0.1 06-Aug-2021 WS_SS09_0.3 06-Aug-2021 WS_SS10_0.1 06-Aug-2021 WS_SS11_0.1 06-Aug-2021 TT_SS01_0.1 06-Aug-2021 Lab Number: 2674272.25 2674272.26 2674272.28 2674272.31 2674272.34 Individual Tests Dry Matter g/100g as rcvd 74 75 84 73 68 Heavy Metals, Screen Level Total Recoverable Arsenic mg/kg dry wt 16 5 3 6 10 Total Recoverable Cadmium mg/kg dry wt 0.10 < 0.10	Hexachlorobenzene	mg/kg dry wt	< 0.015	< 0.013	< 0.013	< 0.013	< 0.012
Decorate	Methoxychlor	mg/kg dry wt	< 0.015	< 0.013	< 0.013	< 0.013	< 0.012
Decorate		Sample Name	WS SS09 0.1	WS SS09 0.3	WS SS10 0.1	WS SS11 0.1	TT SS01 0.1
Individual Tests Dry Matter g/100g as rcvd 74 75 84 73 68		oampie name.					
Dry Matter g/100g as rcvd 74 75 84 73 68 Heavy Metals, Screen Level Total Recoverable Arsenic mg/kg dry wt 16 5 3 6 10 Total Recoverable Cadmium mg/kg dry wt 0.10 < 0.10		Lab Number:	2674272.25	2674272.26	2674272.28	2674272.31	2674272.34
Heavy Metals, Screen Level Total Recoverable Arsenic mg/kg dry wt 16 5 3 6 10 Total Recoverable Cadmium mg/kg dry wt 0.10 < 0.10 < 0.10 0.11 0.35 Total Recoverable Chromium mg/kg dry wt 17 11 9 10 22 Total Recoverable Copper mg/kg dry wt 13 6 4 14 21 Total Recoverable Lead mg/kg dry wt 38 17.5 10.1 11.1 23 Total Recoverable Nickel mg/kg dry wt 5 5 2 4 6 Total Recoverable Zinc mg/kg dry wt 100 62 14 43 47	Individual Tests						
Total Recoverable Arsenic mg/kg dry wt 16 5 3 6 10 Total Recoverable Cadmium mg/kg dry wt 0.10 < 0.10	Dry Matter	g/100g as rcvd	74	75	84	73	68
Total Recoverable Cadmium mg/kg dry wt 0.10 < 0.10 < 0.10 0.11 0.35 Total Recoverable Chromium mg/kg dry wt 17 11 9 10 22 Total Recoverable Copper mg/kg dry wt 13 6 4 14 21 Total Recoverable Lead mg/kg dry wt 38 17.5 10.1 11.1 23 Total Recoverable Nickel mg/kg dry wt 5 5 2 4 6 Total Recoverable Zinc mg/kg dry wt 100 62 14 43 47	Heavy Metals, Screen Level						
Total Recoverable Chromium mg/kg dry wt 17 11 9 10 22 Total Recoverable Copper mg/kg dry wt 13 6 4 14 21 Total Recoverable Lead mg/kg dry wt 38 17.5 10.1 11.1 23 Total Recoverable Nickel mg/kg dry wt 5 5 2 4 6 Total Recoverable Zinc mg/kg dry wt 100 62 14 43 47	Total Recoverable Arsenic	mg/kg dry wt	16	5	3	6	10
Total Recoverable Copper mg/kg dry wt 13 6 4 14 21 Total Recoverable Lead mg/kg dry wt 38 17.5 10.1 11.1 23 Total Recoverable Nickel mg/kg dry wt 5 5 2 4 6 Total Recoverable Zinc mg/kg dry wt 100 62 14 43 47	Total Recoverable Cadmium	mg/kg dry wt	0.10	< 0.10	< 0.10	0.11	0.35
Total Recoverable Lead mg/kg dry wt 38 17.5 10.1 11.1 23 Total Recoverable Nickel mg/kg dry wt 5 5 2 4 6 Total Recoverable Zinc mg/kg dry wt 100 62 14 43 47	Total Recoverable Chromium	mg/kg dry wt	17	11	9	10	22
Total Recoverable Nickel mg/kg dry wt 5 5 2 4 6 Total Recoverable Zinc mg/kg dry wt 100 62 14 43 47	Total Recoverable Copper	mg/kg dry wt	13	6	4	14	21
Total Recoverable Zinc mg/kg dry wt 100 62 14 43 47	Total Recoverable Lead	mg/kg dry wt	38	17.5	10.1	11.1	23
0 0 7	Total Recoverable Nickel	mg/kg dry wt	5	5	2	4	6
Organochlorine Pesticides Screening in Soil	Total Recoverable Zinc	mg/kg dry wt	100	62	14	43	47
	Organochlorine Pesticides So	creening in Soil					
Aldrin mg/kg dry wt < 0.014 < 0.013 < 0.012 < 0.014 < 0.015	Aldrin	mg/kg dry wt	< 0.014	< 0.013	< 0.012	< 0.014	< 0.015
alpha-BHC mg/kg dry wt < 0.014 < 0.013 < 0.012 < 0.014 < 0.015	alpha-BHC	mg/kg dry wt	< 0.014	< 0.013	< 0.012	< 0.014	< 0.015
beta-BHC mg/kg dry wt < 0.014 < 0.013 < 0.012 < 0.014 < 0.015	beta-BHC	mg/kg dry wt	< 0.014	< 0.013	< 0.012	< 0.014	< 0.015
delta-BHC mg/kg dry wt < 0.014 < 0.013 < 0.012 < 0.014 < 0.015	delta-BHC	mg/kg dry wt	< 0.014	< 0.013	< 0.012	< 0.014	< 0.015
gamma-BHC (Lindane) mg/kg dry wt < 0.014 < 0.013 < 0.012 < 0.014 < 0.015	gamma-BHC (Lindane)	mg/kg dry wt	< 0.014	< 0.013	< 0.012	< 0.014	< 0.015
cis-Chlordane mg/kg dry wt < 0.014 < 0.013 < 0.012 < 0.014 < 0.015	cis-Chlordane	mg/kg dry wt	< 0.014	< 0.013	< 0.012	< 0.014	< 0.015

Sample Type: Soil						
	Sample Name:	WS_SS09_0.1	WS_SS09_0.3	WS_SS10_0.1	WS_SS11_0.1	TT_SS01_0.1
	Lab Norrebare	06-Aug-2021	06-Aug-2021	06-Aug-2021	06-Aug-2021	06-Aug-2021
Organochlorine Pesticides Sc	Lab Number:	2674272.25	2674272.26	2674272.28	2674272.31	2674272.34
trans-Chlordane	mg/kg dry wt	< 0.014	< 0.013	< 0.012	< 0.014	< 0.015
2,4'-DDD	- ,	< 0.014	< 0.013	< 0.012	< 0.014	< 0.015
*	mg/kg dry wt					
4,4'-DDD	mg/kg dry wt	< 0.014	< 0.013	< 0.012	< 0.014	< 0.015
2,4'-DDE	mg/kg dry wt	< 0.014	< 0.013	< 0.012 < 0.012	< 0.014	< 0.015
4,4'-DDE	mg/kg dry wt	< 0.014	< 0.013		< 0.014	< 0.015
2,4'-DDT	mg/kg dry wt	< 0.014	< 0.013	< 0.012	< 0.014	< 0.015
4,4'-DDT	mg/kg dry wt	< 0.014	< 0.013	< 0.012	< 0.014	< 0.015
Total DDT Isomers	mg/kg dry wt	< 0.08	< 0.08	< 0.08	< 0.08	< 0.09
Dieldrin	mg/kg dry wt	< 0.014	< 0.013	< 0.012	< 0.014	< 0.015
Endosulfan I	mg/kg dry wt	< 0.014	< 0.013	< 0.012	< 0.014	< 0.015
Endosulfan II	mg/kg dry wt	< 0.014	< 0.013	< 0.012	< 0.014	< 0.015
Endosulfan sulphate	mg/kg dry wt	< 0.014	< 0.013	< 0.012	< 0.014	< 0.015
Endrin Endrin aldehyde	mg/kg dry wt	< 0.014	< 0.013 < 0.013	< 0.012 < 0.012	< 0.014	< 0.015
Endrin aldenyde Endrin ketone	mg/kg dry wt	< 0.014 < 0.014			< 0.014	< 0.015
	mg/kg dry wt	< 0.014	< 0.013	< 0.012	< 0.014	< 0.015 < 0.015
Heptachlor	mg/kg dry wt		< 0.013	< 0.012	< 0.014	
Heptachlor epoxide Hexachlorobenzene	mg/kg dry wt	< 0.014	< 0.013 < 0.013	< 0.012 < 0.012	< 0.014 < 0.014	< 0.015
	00,					< 0.015
Methoxychlor	mg/kg dry wt	< 0.014	< 0.013	< 0.012	< 0.014	< 0.015
Polycyclic Aromatic Hydrocart		SOII^	T	T		
Total of Reported PAHs in Soi		-	-	-	-	< 0.4
1-Methylnaphthalene	mg/kg dry wt	-	-	-	-	< 0.015
2-Methylnaphthalene	mg/kg dry wt	-	-	-	-	< 0.015
Acenaphthylene	mg/kg dry wt	-	-	-	-	< 0.015
Acenaphthene	mg/kg dry wt	-	-	-	-	< 0.015
Anthracene	mg/kg dry wt	-	-	-	-	< 0.015
Benzo[a]anthracene	mg/kg dry wt	-	-	-	-	< 0.015
Benzo[a]pyrene (BAP)	mg/kg dry wt	-	-	-	-	< 0.015
Benzo[a]pyrene Potency Equivalency Factor (PEF) NES		-	-	-	-	< 0.04
Benzo[a]pyrene Toxic Equivalence (TEF)*	mg/kg dry wt	-	-	-	-	< 0.04
Benzo[b]fluoranthene + Benzo fluoranthene		-	-	-	-	< 0.015
Benzo[e]pyrene	mg/kg dry wt	-	-	-	-	< 0.015
Benzo[g,h,i]perylene	mg/kg dry wt	-	-	-	-	< 0.015
Benzo[k]fluoranthene	mg/kg dry wt	-	-	-	-	< 0.015
Chrysene	mg/kg dry wt	-	-	-	-	< 0.015
Dibenzo[a,h]anthracene	mg/kg dry wt	-	-	-	-	< 0.015
Fluoranthene	mg/kg dry wt	-	-	-	-	< 0.015
Fluorene	mg/kg dry wt	-	-	-	-	< 0.015
Indeno(1,2,3-c,d)pyrene	mg/kg dry wt	-	-	-	-	< 0.015
Naphthalene	mg/kg dry wt	-	-	-	-	< 0.08
Perylene	mg/kg dry wt	-	-	-	-	< 0.015
Phenanthrene	mg/kg dry wt	-	-	-	-	< 0.015
Pyrene	mg/kg dry wt	-	-	-	-	< 0.015
Pentachlorophenol Screening	-	S				
Pentachlorophenol (PCP)	mg/kg dry wt	-	-	-	-	< 0.05
2,3,4,6-Tetrachlorophenol (TC		-	-	-	-	< 0.05
Tributyl Tin Trace in Soil sam	ples by GCMS					
Dibutyltin (as Sn)	mg/kg dry wt	-	-	-	-	< 0.005
Monobutyltin (as Sn)	mg/kg dry wt	-	-	-	-	< 0.007
Tributyltin (as Sn)	mg/kg dry wt	-	-	-	-	< 0.004
Triphenyltin (as Sn)	mg/kg dry wt	-	-	-	-	< 0.003

Sample Type: Soil						
Sa	ample Name:	TT_SS02_0.1	TT_SS03_0.1	TT_SS04_0.1	TT_SS05_0.1	TT_SS07_0.1
	Lab Number:	06-Aug-2021 2674272.36	06-Aug-2021 2674272.38	06-Aug-2021 2674272.40	06-Aug-2021 2674272.42	06-Aug-2021 2674272.44
Individual Tests	Lab Nulliber.	2014212.00	201 421 2.30	201 421 2.40	2017212.72	201 421 2.44
Dry Matter	g/100g as rcvd	71	70	71	72	75
Heavy Metals, Screen Level	g/100g do 10va	· · · · · · · · · · · · · · · · · · ·				, ,
Total Recoverable Arsenic	mg/kg dry wt	94	10	65	16	59
Total Recoverable Cadmium	mg/kg dry wt	0.34	0.37	0.37	0.31	0.58
Total Recoverable Chromium	mg/kg dry wt	47	21	134	24	38
Total Recoverable Copper	mg/kg dry wt	38	22	97	22	59
Total Recoverable Lead	mg/kg dry wt	14.1	27	19.3	30	65
Total Recoverable Nickel	mg/kg dry wt	6	7	8	8	6
Total Recoverable Zinc	mg/kg dry wt	49	57	300	93	169
Organochlorine Pesticides Scre	0 0 7		31	300	33	103
Aldrin		< 0.014	< 0.014	< 0.014	< 0.014	< 0.013
-	mg/kg dry wt mg/kg dry wt		< 0.014	< 0.014	< 0.014	< 0.013
alpha-BHC	0 0 ,	< 0.014				
beta-BHC delta-BHC	mg/kg dry wt	< 0.014	< 0.014 < 0.014	< 0.014 < 0.014	< 0.014 < 0.014	< 0.013 < 0.013
gamma-BHC (Lindane)	mg/kg ary wt	< 0.014	< 0.014	< 0.014	< 0.014	< 0.013
cis-Chlordane	mg/kg ary wt	< 0.014	< 0.014	< 0.014	< 0.014	< 0.013
trans-Chlordane			< 0.014			
2,4'-DDD	mg/kg dry wt mg/kg dry wt	< 0.014 < 0.014	< 0.014	< 0.014 < 0.014	< 0.014 < 0.014	< 0.013 < 0.013
4,4'-DDD		< 0.014	< 0.014	< 0.014	< 0.014	< 0.013
2,4'-DDE	mg/kg dry wt mg/kg dry wt	< 0.014	< 0.014	< 0.014	< 0.014	< 0.013
4,4'-DDE	mg/kg dry wt	< 0.014	< 0.014	< 0.014	< 0.014	< 0.013
2,4'-DDE	mg/kg dry wt	< 0.014	< 0.014	< 0.014	< 0.014	< 0.013
4,4'-DDT	mg/kg dry wt	< 0.014	< 0.014	< 0.014	< 0.014	< 0.013
Total DDT Isomers	mg/kg dry wt	< 0.014	< 0.014	< 0.014	< 0.014	< 0.013
Dieldrin	mg/kg dry wt	< 0.09	< 0.014	< 0.014	< 0.014	< 0.013
Endosulfan I	mg/kg dry wt	< 0.014	< 0.014	< 0.014	< 0.014	< 0.013
Endosulfan II	mg/kg dry wt	< 0.014	< 0.014	< 0.014	< 0.014	< 0.013
Endosulfan sulphate	mg/kg dry wt	< 0.014	< 0.014	< 0.014	< 0.014	< 0.013
Endrin	mg/kg dry wt	< 0.014	< 0.014	< 0.014	< 0.014	< 0.013
Endrin aldehyde	mg/kg dry wt	< 0.014	< 0.014	< 0.014	< 0.014	< 0.013
Endrin ketone	mg/kg dry wt	< 0.014	< 0.014	< 0.014	< 0.014	< 0.013
Heptachlor	mg/kg dry wt	< 0.014	< 0.014	< 0.014	< 0.014	< 0.013
Heptachlor epoxide	mg/kg dry wt	< 0.014	< 0.014	< 0.014	< 0.014	< 0.013
Hexachlorobenzene	mg/kg dry wt	< 0.014	< 0.014	< 0.014	< 0.014	< 0.013
Methoxychlor	mg/kg dry wt	< 0.014	< 0.014	< 0.014	< 0.014	< 0.013
Polycyclic Aromatic Hydrocarbo			< 0.014	V 0.014	< 0.014	< 0.013
, ,			.0.4	- 0.4	.0.4	.04
Total of Reported PAHs in Soil	mg/kg dry wt	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4
1-Methylnaphthalene	mg/kg dry wt	< 0.014	< 0.015	< 0.014	< 0.014 < 0.014	< 0.013
2-Methylnaphthalene Acenaphthylene	mg/kg dry wt mg/kg dry wt	< 0.014	< 0.015 < 0.015	< 0.014 < 0.014	< 0.014 < 0.014	< 0.013 < 0.013
. ,						
Acenaphthene	mg/kg dry wt	< 0.014	< 0.015	< 0.014	< 0.014	< 0.013
Anthracene	mg/kg dry wt	< 0.014	< 0.015	< 0.014	< 0.014	< 0.013
Benzo[a]anthracene	mg/kg dry wt	< 0.014	< 0.015	< 0.014	< 0.014	< 0.013
Benzo[a]pyrene (BAP)	mg/kg dry wt	< 0.014	< 0.015	< 0.014	< 0.014	< 0.013
Benzo[a]pyrene Potency Equivalency Factor (PEF) NES*		< 0.04	< 0.04	< 0.04	< 0.04	< 0.04
Benzo[a]pyrene Toxic Equivalence (TEF)*	mg/kg dry wt	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04
Benzo[b]fluoranthene + Benzo[j] fluoranthene	mg/kg dry wt	< 0.014	< 0.015	< 0.014	< 0.014	< 0.013
Benzo[e]pyrene	mg/kg dry wt	< 0.014	< 0.015	< 0.014	< 0.014	< 0.013
Benzo[g,h,i]perylene	mg/kg dry wt	< 0.014	< 0.015	< 0.014	< 0.014	< 0.013
Benzo[k]fluoranthene	mg/kg dry wt	< 0.014	< 0.015	< 0.014	< 0.014	< 0.013
Chrysene	mg/kg dry wt	< 0.014	< 0.015	< 0.014	< 0.014	< 0.013
Dibenzo[a,h]anthracene	mg/kg dry wt	< 0.014	< 0.015	< 0.014	< 0.014	< 0.013

mple Name: ab Number: s Screening in S mg/kg dry wt	TT_SS02_0.1 06-Aug-2021 2674272.36 oil* < 0.014 < 0.014 < 0.014 < 0.07	TT_SS03_0.1 06-Aug-2021 2674272.38 < 0.015 < 0.015	TT_SS04_0.1 06-Aug-2021 2674272.40 < 0.014	TT_SS05_0.1 06-Aug-2021 2674272.42	TT_SS07_0.1 06-Aug-2021 2674272.44
s Screening in S mg/kg dry wt	2674272.36 oil* < 0.014 < 0.014 < 0.014	<pre>2674272.38 < 0.015 < 0.015</pre>	2674272.40 < 0.014	2674272.42	2674272.44
s Screening in S mg/kg dry wt	0.014< 0.014< 0.014< 0.014	< 0.015 < 0.015	< 0.014		
mg/kg dry wt	< 0.014 < 0.014 < 0.014	< 0.015		< 0.014	2.245
mg/kg dry wt	< 0.014 < 0.014	< 0.015		< 0.014	. () ()(1)
mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt	< 0.014		0.044		< 0.013
mg/kg dry wt mg/kg dry wt mg/kg dry wt			< 0.014	< 0.014	< 0.013
mg/kg dry wt mg/kg dry wt	< 0.07	< 0.015	< 0.014	< 0.014	< 0.013
mg/kg dry wt	0.044	< 0.08	< 0.07	< 0.07	< 0.07
	< 0.014	< 0.015	< 0.014	< 0.014	< 0.013
	< 0.014	< 0.015	< 0.014	< 0.014	< 0.013
mg/kg dry wt	< 0.014	< 0.015	< 0.014	< 0.014	< 0.013
Soil by LCMSMS					1
mg/kg dry wt	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
mg/kg dry wt	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
s by GCMS					
mg/kg dry wt	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
mg/kg dry wt	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007
mg/kg dry wt	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004
mg/kg dry wt	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003
mple Name	TT_SS08 0.1	TT_SS09 0.1	TT_SS10 0.1	TT_SS11_0.1	TT_SS12_0.1
	06-Aug-2021	06-Aug-2021	06-Aug-2021	06-Aug-2021	06-Aug-2021
.ab Number:	2674272.46	2674272.48	2674272.52	2674272.54	2674272.56
g/100g as rcvd	79	72	75	76	77
mg/kg dry wt	8	23	67	31	4
mg/kg dry wt	0.21	0.27	0.33	0.38	< 0.10
mg/kg dry wt	27	23	77	26	16
mg/kg dry wt	15	30	78	29	4
mg/kg dry wt	17.1	152	61	43	19.8
mg/kg dry wt	8	5	5	8	4
mg/kg dry wt	72	92	144	210	39
ning in Soil					
mg/kg dry wt	< 0.013	< 0.014	< 0.014	< 0.013	< 0.013
mg/kg dry wt	< 0.013	< 0.014	< 0.014	< 0.013	< 0.013
mg/kg dry wt	< 0.013	< 0.014	< 0.014	< 0.013	< 0.013
mg/kg dry wt	< 0.013	< 0.014	< 0.014	< 0.013	< 0.013
mg/kg dry wt	< 0.013	< 0.014	< 0.014	< 0.013	< 0.013
mg/kg dry wt	< 0.013	< 0.014	< 0.014	< 0.013	< 0.013
mg/kg dry wt	< 0.013	< 0.014	< 0.014	< 0.013	< 0.013
mg/kg dry wt	< 0.013	< 0.014	< 0.014	< 0.013	< 0.013
mg/kg dry wt	< 0.013	< 0.014	< 0.014	< 0.013	< 0.013
mg/kg dry wt	< 0.013	< 0.014	< 0.014	< 0.013	< 0.013
mg/kg dry wt	< 0.013		< 0.014	< 0.013	< 0.013
	< 0.013	< 0.014	< 0.014		< 0.013
	< 0.013	< 0.014	< 0.014	< 0.013	< 0.013
	< 0.08	< 0.09	< 0.08	< 0.08	< 0.08
	< 0.013	< 0.014	< 0.014	< 0.013	< 0.013
mg/kg dry wt	< 0.013	< 0.014	< 0.014	< 0.013	< 0.013
mg/kg dry wt	< 0.013	< 0.014	< 0.014	< 0.013	< 0.013
mg/kg dry wt	< 0.013	< 0.014	< 0.014	< 0.013	< 0.013
mg/kg dry wt	< 0.013	< 0.014	< 0.014	< 0.013	< 0.013
	< 0.013	< 0.014	< 0.014	< 0.013	< 0.013
					< 0.013
	< 0.013	< 0.014	< 0.014	< 0.013	< 0.013
			< 0.014	< 0.013	< 0.013
					< 0.013
					< 0.013
	mg/kg dry wt	mg/kg dry wt	mg/kg dry wt < 0.005	mg/kg dry wt < 0.005	mg/kg dry wt < 0.005

Sample Type: Soil							
Sa	ample Name:	TT_SS08_0.1 06-Aug-2021	TT_SS09_0.1 06-Aug-2021	TT_SS10_0.1 06-Aug-2021	TT_SS11_0.1 06-Aug-2021	TT_SS12_0.1 06-Aug-2021	
	Lab Number:	2674272.46	2674272.48	2674272.52	2674272.54	2674272.56	
Polycyclic Aromatic Hydrocarbor	ns Screening in S	oil*					
Total of Reported PAHs in Soil	mg/kg dry wt	< 0.3	< 0.4	< 0.4	0.7	< 0.4	
1-Methylnaphthalene	mg/kg dry wt	< 0.013	< 0.014	< 0.013	< 0.013	< 0.013	
2-Methylnaphthalene	mg/kg dry wt	< 0.013	< 0.014	< 0.013	< 0.013	< 0.013	
Acenaphthylene	mg/kg dry wt	< 0.013	< 0.014	< 0.013	0.021	< 0.013	
Acenaphthene	mg/kg dry wt	< 0.013	< 0.014	< 0.013	< 0.013	< 0.013	
Anthracene	mg/kg dry wt	< 0.013	< 0.014	< 0.013	0.014	< 0.013	
Benzo[a]anthracene	mg/kg dry wt	< 0.013	< 0.014	0.022	0.058	< 0.013	
Benzo[a]pyrene (BAP)	mg/kg dry wt	< 0.013	< 0.014	0.035	0.061	< 0.013	
Benzo[a]pyrene Potency Equivalency Factor (PEF) NES*	mg/kg dry wt	< 0.03	< 0.04	0.04	0.09	< 0.04	
Benzo[a]pyrene Toxic Equivalence (TEF)*	mg/kg dry wt	< 0.03	< 0.04	0.04	0.09	< 0.04	
Benzo[b]fluoranthene + Benzo[j] fluoranthene	mg/kg dry wt	< 0.013	< 0.014	0.030	0.067	< 0.013	
Benzo[e]pyrene	mg/kg dry wt	< 0.013	< 0.014	0.018	0.036	< 0.013	
Benzo[g,h,i]perylene	mg/kg dry wt	< 0.013	< 0.014	0.026	0.031	< 0.013	
Benzo[k]fluoranthene	mg/kg dry wt	< 0.013	< 0.014	0.013	0.029	< 0.013	
Chrysene	mg/kg dry wt	< 0.013	< 0.014	0.017	0.061	< 0.013	
Dibenzo[a,h]anthracene	mg/kg dry wt	< 0.013	< 0.014	< 0.013	< 0.013	< 0.013	
Fluoranthene	mg/kg dry wt	< 0.013	< 0.014	0.027	0.097	< 0.013	
Fluorene	mg/kg dry wt	< 0.013	< 0.014	< 0.013	< 0.013	< 0.013	
Indeno(1,2,3-c,d)pyrene	mg/kg dry wt	< 0.013	< 0.014	0.022	0.034	< 0.013	
Naphthalene	mg/kg dry wt	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07	
Perylene	mg/kg dry wt	< 0.013	< 0.014	< 0.013	< 0.013	< 0.013	
Phenanthrene	mg/kg dry wt	< 0.013	< 0.014	< 0.013	0.060	< 0.013	
Pyrene	mg/kg dry wt	< 0.013	< 0.014	0.031	0.099	< 0.013	
Pentachlorophenol Screening in	Soil by LCMSMS	3					
Pentachlorophenol (PCP)	mg/kg dry wt	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	
2,3,4,6-Tetrachlorophenol (TCP)) mg/kg dry wt	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	
Tributyl Tin Trace in Soil sample	es by GCMS						
Dibutyltin (as Sn)	mg/kg dry wt	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	
Monobutyltin (as Sn)	mg/kg dry wt	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	
Tributyltin (as Sn)	mg/kg dry wt	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	
Triphenyltin (as Sn)	mg/kg dry wt	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	
Sa	ample Name:	TT_SS06_0.1 06-Aug-2021					
	Lab Number:	2674272.59					
Individual Tests							
Dry Matter	g/100g as rcvd	77	-	-	-	-	
Heavy Metals, Screen Level	-		I.	I.	1	I .	
Total Recoverable Arsenic	mg/kg dry wt	7	_	_	_	-	
Total Recoverable Cadmium	mg/kg dry wt	0.30	_	_	_	-	
Total Recoverable Chromium	mg/kg dry wt	18	-	-	-	-	
Total Recoverable Copper	mg/kg dry wt	18	-	_	_	-	
Total Recoverable Lead	mg/kg dry wt	25	-	_	_	-	
Total Recoverable Nickel	mg/kg dry wt	6	-	_	-	-	
Total Recoverable Zinc	mg/kg dry wt	108	-	-	<u>-</u>	-	
Organochlorine Pesticides Screening in Soil							
-		~ 0.012					
Aldrin	mg/kg dry wt	< 0.013	-	-	-	-	
alpha-BHC	mg/kg dry wt	< 0.013	-	-	-	-	
beta-BHC	mg/kg dry wt	< 0.013	-	-	-	-	
delta-BHC	mg/kg dry wt	< 0.013	-	-	-	-	
gamma-BHC (Lindane)	mg/kg dry wt	< 0.013	-	-	-	-	
cis-Chlordane	mg/kg dry wt	< 0.013	-	-	-	-	
trans-Chlordane	mg/kg dry wt	< 0.013	-	-	-	-	

Sample Type: Soil						
Sa	mple Name:	TT_SS06_0.1				
		06-Aug-2021				
	ab Number:	2674272.59				
Organochlorine Pesticides Scree				T		
2,4'-DDD	mg/kg dry wt	< 0.013	-	-	-	-
4,4'-DDD	mg/kg dry wt	< 0.013	-	-	-	-
2,4'-DDE	mg/kg dry wt	< 0.013	-	-	-	-
4,4'-DDE	mg/kg dry wt	< 0.013	-	-	-	-
2,4'-DDT	mg/kg dry wt	< 0.013	-	-	-	-
4,4'-DDT	mg/kg dry wt	< 0.013	-	-	-	-
Total DDT Isomers	mg/kg dry wt	< 0.08	-	-	-	-
Dieldrin	mg/kg dry wt	< 0.013	-	-	-	-
Endosulfan I	mg/kg dry wt	< 0.013	-	-	-	-
Endosulfan II	mg/kg dry wt	< 0.013	-	-	-	-
Endosulfan sulphate	mg/kg dry wt	< 0.013	-	-	-	-
Endrin	mg/kg dry wt	< 0.013	-	-	-	-
Endrin aldehyde	mg/kg dry wt	< 0.013	-	-	-	-
Endrin ketone	mg/kg dry wt	< 0.013	-	-	-	-
Heptachlor	mg/kg dry wt	< 0.013	-	-	-	-
Heptachlor epoxide	mg/kg dry wt	< 0.013	-	-	-	-
Hexachlorobenzene	mg/kg dry wt	< 0.013	-	-	-	-
Methoxychlor	mg/kg dry wt	< 0.013	-	-	-	-
Polycyclic Aromatic Hydrocarbon	s Screening in S	Soil*				
Total of Reported PAHs in Soil	mg/kg dry wt	< 0.4	-	-	-	-
1-Methylnaphthalene	mg/kg dry wt	< 0.013	-	-	-	-
2-Methylnaphthalene	mg/kg dry wt	< 0.013	-	-	-	-
Acenaphthylene	mg/kg dry wt	< 0.013	-	-	-	-
Acenaphthene	mg/kg dry wt	< 0.013	-	-	-	-
Anthracene	mg/kg dry wt	< 0.013	-	-	-	-
Benzo[a]anthracene	mg/kg dry wt	< 0.013	-	-	-	-
Benzo[a]pyrene (BAP)	mg/kg dry wt	< 0.013	-	-	-	-
Benzo[a]pyrene Potency Equivalency Factor (PEF) NES*	mg/kg dry wt	< 0.04	-	-	-	-
Benzo[a]pyrene Toxic Equivalence (TEF)*	mg/kg dry wt	< 0.04	-	-	-	-
Benzo[b]fluoranthene + Benzo[j] fluoranthene	mg/kg dry wt	< 0.013	-	-	-	-
Benzo[e]pyrene	mg/kg dry wt	< 0.013	-	-	-	-
Benzo[g,h,i]perylene	mg/kg dry wt	< 0.013	-	-	-	-
Benzo[k]fluoranthene	mg/kg dry wt	< 0.013	-	-	-	-
Chrysene	mg/kg dry wt	< 0.013	-	-	-	-
Dibenzo[a,h]anthracene	mg/kg dry wt	< 0.013	-	-	-	-
Fluoranthene	mg/kg dry wt	< 0.013	-	-	-	-
Fluorene	mg/kg dry wt	< 0.013	-	-	-	-
Indeno(1,2,3-c,d)pyrene	mg/kg dry wt	< 0.013	-	-	-	-
Naphthalene	mg/kg dry wt	< 0.07	-	-	-	-
Perylene	mg/kg dry wt	< 0.013	-	-	-	-
Phenanthrene	mg/kg dry wt	< 0.013	-	-	-	-
Pyrene	mg/kg dry wt	< 0.013	-	-	-	-
Pentachlorophenol Screening in Soil by LCMSMS						
Pentachlorophenol (PCP)	mg/kg dry wt	< 0.05	-	-	-	-
2,3,4,6-Tetrachlorophenol (TCP)	mg/kg dry wt	< 0.05	-	-	-	-
Tributyl Tin Trace in Soil samples by GCMS						
Dibutyltin (as Sn)	mg/kg dry wt	< 0.005	-	-	-	-
Monobutyltin (as Sn)	mg/kg dry wt	< 0.007	-	-	-	-
Tributyltin (as Sn)	mg/kg dry wt	< 0.004	-	-	-	-
Triphenyltin (as Sn)	mg/kg dry wt	< 0.003	-	-	-	-
<u> </u>			l .	l .		

Summary of Methods

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively simple matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis. A detection limit range indicates the lowest and highest detection limits in the associated suite of analytes. A full listing of compounds and detection limits are available from the laboratory upon request. Unless otherwise indicated, analyses were performed at Hill Laboratories, 28 Duke Street, Frankton, Hamilton 3204.

Sample Type: Soil	I		
Test	Method Description	Default Detection Limit	Sample No
Environmental Solids Sample Drying*	Air dried at 35°C Used for sample preparation. May contain a residual moisture content of 2-5%.	-	1-2, 4, 7-8, 10, 13, 16, 19, 22, 25-26, 28, 31, 34, 36, 38, 40, 42, 44, 46, 48, 52, 54, 56, 59
Soil Prep Dry for Organics,Trace*	Air dried at 35°C Used for sample preparation. May contain a residual moisture content of 2-5%.	-	34, 36, 38, 40, 42, 44, 46, 48, 52, 54, 56, 59
Total of Reported PAHs in Soil	Sonication extraction, GC-MS analysis. In-house based on US EPA 8270.	0.03 mg/kg dry wt	34, 36, 38, 40, 42, 44, 46, 48, 52, 54, 56, 59
Heavy Metals, Screen Level	Dried sample, < 2mm fraction. Nitric/Hydrochloric acid digestion US EPA 200.2. Complies with NES Regulations. ICP-MS screen level, interference removal by Kinetic Energy Discrimination if required.	0.10 - 4 mg/kg dry wt	1-2, 4, 7-8, 10, 13, 16, 19, 22, 25-26, 28, 31, 34, 36, 38, 40, 42, 44, 46, 48, 52, 54, 56, 59
Organochlorine Pesticides Screening in Soil	Sonication extraction, GC-ECD analysis. Tested on as received sample. In-house based on US EPA 8081.	0.010 - 0.06 mg/kg dry wt	1-2, 4, 7-8, 10, 13, 16, 19, 22, 25-26, 28, 31, 34, 36, 38, 40, 42, 44, 46, 48, 52, 54, 56, 59
Polycyclic Aromatic Hydrocarbons Screening in Soil*	Sonication extraction, GC-MS analysis. Tested on as received sample. In-house based on US EPA 8270.	0.002 - 0.05 mg/kg dry wt	34, 36, 38, 40, 42, 44, 46, 48, 52, 54, 56, 59
Pentachlorophenol Screening in Soil by LCMSMS	Solvent extraction, LC-MS/MS analysis. Tested on dried sample. In-house.	0.010 mg/kg dry wt	34, 36, 38, 40, 42, 44, 46, 48, 52, 54, 56, 59
Tributyl Tin Trace in Soil samples by GCMS	Solvent extraction, derivitisation, GC-MS analysis. Tested on dried sample. In-house.	0.003 - 0.007 mg/kg dry wt	34, 36, 38, 40, 42, 44, 46, 48, 52, 54, 56, 59
Dry Matter (Env)	Dried at 103°C for 4-22hr (removes 3-5% more water than air dry), gravimetry. (Free water removed before analysis, non-soil objects such as sticks, leaves, grass and stones also removed). US EPA 3550.	0.10 g/100g as rcvd	1-2, 4, 7-8, 10, 13, 16, 19, 22, 25-26, 28, 31, 34, 36, 38, 40, 42, 44, 46, 48, 52, 54, 56, 59
Benzo[a]pyrene Potency Equivalency Factor (PEF) NES*	BaP Potency Equivalence calculated from; Benzo(a)anthracene x 0.1 + Benzo(b)fluoranthene x 0.1 + Benzo(j)fluoranthene x 0.1 + Benzo(k)fluoranthene x 0.1 + Benzo(a)pyrene x 1.0 + Chrysene x 0.01 + Dibenzo(a,h)anthracene x 1.0 + Fluoranthene x 0.01 + Indeno(1,2,3-c,d)pyrene x 0.1. Ministry for the Environment. 2011. Methodology for Deriving Standards for Contaminants in Soil to Protect Human Health. Wellington: Ministry for the Environment.	0.002 mg/kg dry wt	34, 36, 38, 40, 42, 44, 46, 48, 52, 54, 56, 59

Sample Type: Soil							
Test	Method Description	Default Detection Limit	Sample No				
Benzo[a]pyrene Toxic Equivalence (TEF)*	Benzo[a]pyrene Toxic Equivalence (TEF) calculated from; Benzo[a]pyrene x 1.0 + Benzo(a)anthracene x 0.1 + Benzo(b) fluoranthene x 0.1 + Benzo(k)fluoranthene x 0.1 + Chrysene x 0.01 + Dibenzo(a,h)anthracene x 1.0 + Indeno(1,2,3-c,d)pyrene x 0.1. Guidelines for assessing and managing contaminated gasworks sites in New Zealand (GMG) (MfE, 1997).	0.002 mg/kg dry wt	34, 36, 38, 40, 42, 44, 46, 48, 52, 54, 56, 59				

These samples were collected by yourselves (or your agent) and analysed as received at the laboratory.

Testing was completed between 11-Aug-2021 and 17-Aug-2021. For completion dates of individual analyses please contact the laboratory.

Samples are held at the laboratory after reporting for a length of time based on the stability of the samples and analytes being tested (considering any preservation used), and the storage space available. Once the storage period is completed, the samples are discarded unless otherwise agreed with the customer. Extended storage times may incur additional charges.

This certificate of analysis must not be reproduced, except in full, without the written consent of the signatory.

Ara Heron BSc (Tech)

Client Services Manager - Environmental

for y

10 126 5508 0,1

Hill I aboratories

Quote	TRIED, TEST	ED AND TRU	ISTED	R J Hill Laboratories Limi ^{r Job No:} 28 Duke Street Frankton Private Bag 3205 Hamilton 3240 New Zeal: Date Recv: 13-Aug-21 07:50 7 7 1 5 4				
	ry Contact Stefan Yap		259737	T 0508 HILL LAB (44 { Received by: Jonas Eyskens				
	nitted By Tom Harvey		T +64 7 858 2000 E mail@hill-labs.co.nz					
		e Partners Limite	ed 59	W www.hill-laboratories 3126771544				
	s PO Box 9528, Newmark			CHAIN OF CUSTODY RECURD				
Addica	Auckland 1149		-	Sent to Date & Time: 11/8/121				
 Phone	09 523 6900 <i>Mobile</i>	022314424	<u> </u>	Hill Laboratories				
Email	ten honey pode			Tick if you require COC to be emailed back				
	ge To Pattle Delamore Pa		59	to be emailed back Signature:				
	Reference Muriwai			Received at Hill Laboratories				
Order I	vo A03582101			Name:				
Resul	Additional Reports Will be st	ent as specified below.		Signature:				
promote discountry	nail Primary Contact 🏻 🗍 Email	Submitter Ema	ail Client	Condition Temp:				
□ ot	nail Other her			☐ Room Temp ☐ Chilled ☐ Frozen ☐ ☐				
Dates of	f testing are not routinely included in the (nform the laboratory if you would like this	Certificates of Analysis. information reported.		Sample & Analysis details checked				
ATT	ITIONAL INFORMATIO	N / KNOWN HA	WARDS	Signature:				
0	ted Sample Types			Priority				
Soil (8	ted Sample Types							
COII (S	ony							
No.	Sample Name	Sample Date/Time	Sample Typ	e Tests Required				
1	KC_550_0.\	10.8.24	Value Coliman (September 1987)) Lab Confesite				
2	KES502-0.1	- Company of the Comp	e programme de la companya de la com	S HM7 + OCP				
3	KC_\$503_0.1	Active statistics will be a constant	XII aaanga ayaa ka aagaa					
4	16C_58U4_0.1	William Control of the Control of th	-PSP-Lich converse from summarian					
5	VCC-S501-0.3	The second secon	Maria de la Proposicio de la Carte de C	Hold Cold				
6	KCS8020.3	**************************************	established and additional control of the Control					
7	KE_5503_C.7	er en	e e e e e e e e e e e e e e e e e e e					
0	1// /- 1 0.5	and the state of t	-					

ANALYSIS REQUEST

104 10

lay 1

10

5517

R J Hill Laboratories Limited TRIED, TESTED AND TRUSTED 28 Duke Street Frankton 3204 Private Bag 3205 **Quote No** 109925 Hamilton 3240 New Zealand Office use only Primary Contact Stefan Yap 0508 HILL LAB (44 555 22) (Job No) 259737 +64 7 858 2000 Submitted By Tom Harvey 247841 mail@hill-labs.co.nz E www.hill-laboratories.com **Client Name** Pattle Delamore Partners Limited 59 Address PO Box 9528, Newmarket Auckland 1149 Sent to Date & Time: **Hill Laboratories** 09 523 6900 Phone Name. Tick if you require COC Email to be emailed back Signature: Charge To Pattle Delamore Partners Limited 59 Received at Date & Time Client Reference Muriwai Hill Laboratories Order No A03582101 Name: Reports will be emailed to Primary Contact by default. Signature. Results To Additional Reports will be sent as specified below. Condition Temp: Email Other 🔲 Room Temp 🔲 Chilled 🔲 Frozen Dates of testing are not routinely included in the Certificates of Analysis. Sample & Analysis details checked Please inform the laboratory if you would like this information reported. Signature: ADDITIONAL INFORMATION / KNOWN HAZARDS **Priority** Low Normal Urgent (ASAP, extra charge applies, please contact lab first) NOTE: The estimated turnaround time for the types and number of samples and analyses specified on this quote is by 4:30 pm, 5 working days following the day of receipt of the samples at the laboratory. Requested Reporting Date: **Quoted Sample Types** Soil (Soil) No. Sample Name Sample Date/Time Sample Type Tests Required 1 2 3 4 5 6 7 8 9

ANALYSIS REQUEST

2000

Page 4

10

Hill Laboratories TRIED. TESTED AND TRUSTED

28 Duke Street Frankton 3204 Private Bag 3205 109925 **Quote No** Hamilton 3240 New Zealand Office use only (Job No) Primary Contact Stefan Yap 0508 HILL LAB (44 555 22) 259737 +64 7 858 2000 mail@hill-labs.co.nz Submitted By Tom Harvey 247841 Ε www.hill-laboratories.com Pattle Delamore Partners Limited **Client Name** 59 Address PO Box 9528, Newmarket Auckland 1149 Sent to Date & Time: Hill Laboratories 09 523 6900 Phone Mobile Name: Tick if you require COC Email to be emailed back Signature: Charge To Pattle Delamore Partners Limited Received at Date & Time Client Reference Muriwai Hill Laboratories Name: Order No A03582101 Reports will be emailed to Primary Contact by default. Signature: Results To Additional Reports will be sent as specified below. Temp: Condition Email Other ☐ Room Temp ☐ Chilled ☐ Frozen Dates of testing are not routinely included in the Certificates of Analysis. Sample & Analysis details checked Please inform the laboratory if you would like this information reported. Signature: ADDITIONAL INFORMATION / KNOWN HAZARDS Priority ☐ Normal Low Urgent (ASAP, extra charge applies, please contact lab first) NOTE: The estimated turnaround time for the types and number of samples and analyses specified on this quote is by 4:30 pm, 5 working days following the day of receipt of the samples at the laboratory. Requested Reporting Date: **Quoted Sample Types** Soil (Soil) Sample Date/Time Sample Type Tests Required Sample Name No. 1 10/8/2 2 3 4 5 6 7 8 9

ANALYSIS REQUEST

R J Hill Laboratories Limited

b of W

10

ANALYSIS REQUEST R J Hill Laboratories Limited 28 Duke Street Frankton 3204 Private Bag 3205 **Quote No** 109925 Hamilton 3240 New Zealand Office use only (Job No) 0508 HILL LAB (44 555 22) Primary Contact Stefan Yap +64 7 858 2000 Tom Harvey mail@hill-labs.co.nz Submitted By 247841 Ε www.hill-laboratories.com **Client Name** Pattle Delamore Partners Limited 59 Address PO Box 9528, Newmarket Auckland 1149 Sent to Date & Time: Hill Laboratories 09 523 6900 Phone Mobile Name: Tick if you require COC to be emailed back Email Signature: Charge To Pattle Delamore Partners Limited Received at Date & Time Client Reference Muriwai Hill Laboratories Name: Order No A03582101 Reports will be emailed to Primary Contact by default. Signature: Results To Additional Reports will be sent as specified below. Temp: Condition Email Other 🔲 Room Temp 🔲 Chilled 🔲 Frozen Dates of testing are not routinely included in the Certificates of Analysis. Sample & Analysis details checked Please inform the laboratory if you would like this information reported. Signature: ADDITIONAL INFORMATION / KNOWN HAZARDS Priority Low Normal Urgent (ASAP, extra charge applies, please contact lab first) NOTE: The estimated turnaround time for the types and number of samples and analyses specified on this quote is by 4:30 pm, 5 working days following the day of receipt of the samples at the laboratory. Requested Reporting Date: **Quoted Sample Types** Soil (Soil) Sample Date/Time Sample Type Tests Required No. Sample Name 1 2 3 4 5 6 7 8

ANALYSIS REQUEST R J Hill Laboratories Limited TRIED, TESTED AND TRUSTED 28 Duke Street Frankton 3204 Private Bag 3205 **Quote No** 109925 Hamilton 3240 New Zealand Office use only Primary Contact Stefan Yap 0508 HILL LAB (44 555 22) (Job No) 259737 +64 7 858 2000 Submitted By Tom Harvey 247841 Е mail@hill-labs.co.nz www.hill-laboratories.com **Client Name** Pattle Delamore Partners Limited 59 Address PO Box 9528, Newmarket Auckland 1149 Sent to Date & Time: Hill Laboratories 09 523 6900 Phone Mobile Name: Tick if you require COC Email to be emailed back Signature: Charge To Pattle Delamore Partners Limited 59 Received at Date & Time Client Reference Muriwai Hill Laboratories Name: Order No A03582101 Reports will be emailed to Primary Contact by default. Signature: Results To Additional Reports will be sent as specified below. Condition Temp: Email Other ☐ Room Temp ☐ Chilled ☐ Frozen Other Dates of testing are not routinely included in the Certificates of Analysis. Sample & Analysis details checked Please inform the laboratory if you would like this information reported. Signature: ADDITIONAL INFORMATION / KNOWN HAZARDS **Priority** Low Normal Urgent (ASAP, extra charge applies, please contact lab first) NOTE: The estimated turnaround time for the types and number of samples and analyses specified on this quote is by 4:30 pm, 5 working days following the day of receipt of the samples at the laboratory. Requested Reporting Date: **Quoted Sample Types** Soil (Soil) Sample Date/Time Sample Type Tests Required No. Sample Name 1 (0)0 2 3 4 5 6 7 Col of 8 9

ANALYSIS REQUEST R J Hill Laboratories Limited TRIED, TESTED AND TRUSTED 28 Duke Street Frankton 3204 Private Bag 3205 109925 **Quote No** Hamilton 3240 New Zealand Office use only (Job No) Primary Contact Stefan Yap 0508 HILL LAB (44 555 22) 259737 +64 7 858 2000 Submitted By Tom Harvey mail@hill-labs.co.nz 247841 Ε www.hill-laboratories.com Pattle Delamore Partners Limited **Client Name** 59 Address PO Box 9528, Newmarket Auckland 1149 Sent to Date & Time: Hill Laboratories 09 523 6900 Phone Mobile Name: Tick if you require COC Email to be emailed back Signature: Charge To Pattle Delamore Partners Limited 59 Received at Date & Time Client Reference Muriwai Hill Laboratories Name: Order No A03582101 Reports will be emailed to Primary Contact by default. Signature. Results To Additional Reports will be sent as specified below. Temp: Condition Email Other Room Temp Chilled Frozen Other Dates of testing are not routinely included in the Certificates of Analysis. Sample & Analysis details checked Please inform the laboratory if you would like this information reported. Signature: ADDITIONAL INFORMATION / KNOWN HAZARDS **Priority** Low Normal Urgent (ASAP, extra charge applies, please contact lab first) NOTE: The estimated turnaround time for the types and number of samples and analyses specified on this quote is by 4:30 pm, 5 working days following the day of receipt of the samples at the laboratory. Requested Reporting Date: Quoted Sample Types Soil (Soil) Sample Date/Time Sample Type Tests Required No. Sample Name 1 2 3 4 5 6 7 8 9

Vage 10

10

R J Hill Laboratories Limited 28 Duke Street Frankton 3204 Private Bag 3205 109925 **Quote No** Hamilton 3240 New Zealand Office use only (Job No) Primary Contact Stefan Yap 0508 HILL LAB (44 555 22) 259737 +64 7 858 2000 Submitted By Tom Harvey Ε mail@hill-labs.co.nz 247841 www.hill-laboratories.com **Client Name** Pattle Delamore Partners Limited 59 AHAN OF AISTONY Address PO Box 9528, Newmarket Auckland 1149 Sent to Date & Time: Hill Laboratories 09 523 6900 Phone Mobile Name: Tick if you require COC to be emailed back Email Signature. Charge To Pattle Delamore Partners Limited 59 Received at Date & Time Client Reference Muriwai Hill Laboratories Name: Order No A03582101 Reports will be emailed to Primary Contact by default. Signature: Results To Additional Reports will be sent as specified below. Condition Temp: Email Other 🔲 Room Temp 🔲 Chilled 🔲 Frozen Other Dates of testing are not routinely included in the Certificates of Analysis. Sample & Analysis details checked Please inform the laboratory if you would like this information reported. Signature: ADDITIONAL INFORMATION / KNOWN HAZARDS **Priority** Low Normal **√** High Urgent (ASAP, extra charge applies, please contact lab first) NOTE: The estimated turnaround time for the types and number of samples and analyses specified on this quote is by 4:30 pm, 5 working days following the day of receipt of the samples at the laboratory. Requested Reporting Date: **Quoted Sample Types** Soil (Soil) Sample Date/Time Sample Type Tests Required No. Sample Name 1 2 3 4 5 6 7 8 9

ANALYSIS REQUEST

Page 8

Hill Laboratories TRIED. TESTED AND TRUSTED

Private Bag 3205 109925 **Quote No** Hamilton 3240 New Zealand Office use only (Job No) Primary Contact Stefan Yap 0508 HILL LAB (44 555 22) 259737 +64 7 858 2000 Tom Harvey 247841 Submitted By E mail@hill-labs.co.nz www.hill-laboratories.com **Client Name** Pattle Delamore Partners Limited 59 Address PO Box 9528, Newmarket Auckland 1149 Sent to Date & Time: Hill Laboratories 09 523 6900 Mobile Phone Name: Tick if you require COC to be emailed back Email Signature: Charge To Pattle Delamore Partners Limited Received at Date & Time Client Reference Muriwai **Hill Laboratories** Name: Order No A03582101 Reports will be emailed to Primary Contact by default. Signature: Results To Additional Reports will be sent as specified below. Condition Temp: Email Other ☐ Room Temp ☐ Chilled ☐ Frozen Other Dates of testing are not routinely included in the Certificates of Analysis. Sample & Analysis details checked Please inform the laboratory if you would like this information reported. Signature: ADDITIONAL INFORMATION / KNOWN HAZARDS Priority Low ☐ Normal Urgent (ASAP, extra charge applies, please contact lab first) NOTE: The estimated turnaround time for the types and number of samples and analyses specified on this quote is by 4:30 pm, 5 working days following the day of receipt of the samples at the laboratory. Requested Reporting Date: **Quoted Sample Types** Soil (Soil) Sample Date/Time Sample Type Tests Required No. Sample Name 1 2 3 4 5 6 7 8 NO 181 9 10

ANALYSIS REQUEST

R J Hill Laboratories Limited

28 Duke Street Frankton 3204

_5526_0

ANALYSIS REQUEST R J Hill Laboratories Limited TRIED, TESTED AND TRUSTED 28 Duke Street Frankton 3204 Private Bag 3205 **Quote No** 109925 Hamilton 3240 New Zealand Office use only (Job No) Primary Contact Stefan Yap 0508 HILL LAB (44 555 22) +64 7 858 2000 Tom Harvey 247841 Submitted By Ε mail@hill-labs.co.nz www.hill-laboratories.com **Client Name** Pattle Delamore Partners Limited 59 Address PO Box 9528, Newmarket Auckland 1149 Sent to Date & Time: Hill Laboratories 09 523 6900 Phone Mobile, Name: Tick if you require COC to be emailed back Email Signature. Charge To Pattle Delamore Partners Limited Received at Date & Time Client Reference Muriwai Hill Laboratories Name: Order No A03582101 Reports will be emailed to Primary Contact by default. Signature: Results To Additional Reports will be sent as specified below. Email Primary Contact Email Submitter Email Client Temp: Condition Email Other 🔲 Room Temp 🔲 Chilled 🔲 Frozen Dates of testing are not routinely included in the Certificates of Analysis. Sample & Analysis details checked Please inform the laboratory if you would like this information reported. Signature: ADDITIONAL INFORMATION / KNOWN HAZARDS Priority Low Normal **▼** High Urgent (ASAP, extra charge applies, please contact lab first) NOTE: The estimated turnaround time for the types and number of samples NOTE: The estimated turnaround time for the types and intrible of samples and analyses specified on this quote is by 4:30 pm, 5 working days following the day of receipt of the samples at the laboratory. Requested Reporting Date: **Quoted Sample Types** Soil (Soil) Sample Date/Time Sample Type Tests Required No. Sample Name 1 10181 2 3 4 5 6 7 8 9

ANALYSIS REQUEST R J Hill Laboratories Limited TRIED, TESTED AND TRUSTED 28 Duke Street Frankton 3204 Private Bag 3205 109925 **Quote No** Hamilton 3240 New Zealand Office use only (Job No) 0508 HILL LAB (44 555 22) Primary Contact Stefan Yap +64 7 858 2000 Tom Harvey mail@hill-labs.co.nz Submitted By 247841 www.hill-laboratories.com **Client Name** Pattle Delamore Partners Limited 59 Address PO Box 9528, Newmarket Auckland 1149 Date & Time: 🐧 Sent to Hill Laboratories 09 523 6900 Phone Mobile ' Name: Tick if you require COC to be emailed back Email Signature: Charge To Pattle Delamore Partners Limited Received at Date & Time. Client Reference Muriwai Hill Laboratories Name: Order No A03582101 Reports will be emailed to Primary Contact by default. Signature: Results To Additional Reports will be sent as specified below. Temp: Condition Email Other ☐ Room Temp ☐ Chilled ☐ Frozen Dates of testing are not routinely included in the Certificates of Analysis. Sample & Analysis details checked Please inform the laboratory if you would like this information reported. Signature: ADDITIONAL INFORMATION / KNOWN HAZARDS Priority Low Normal Urgent (ASAP, extra charge applies, please contact lab first) NOTE: The estimated turnaround time for the types and number of samples and analyses specified on this quote is by 4:30 pm, 5 working days following the day of receipt of the samples at the laboratory. Requested Reporting Date: **Quoted Sample Types** Soil (Soil) Sample Date/Time Sample Type Tests Required No. Sample Name 1 10/8/2 2 3 4 5 6 7 8 9

R J Hill Laboratories Limited 28 Duke Street Frankton 3204 Private Bag 3205

Hamilton 3240 New Zealand

T **0508 HILL LAB** (44 555 22) T +64 7 858 2000

W www.hill-laboratories.com

E mail@hill-labs.co.nz

Page 1 of 3

Job Information Summary

Client: Pattle Delamore Partners Limited

Contact: Stefan Yap

C/- Pattle Delamore Partners Limited

PO Box 9528 Newmarket Auckland 1149 **Lab No:** 2677154

Date Registered: 13-Aug-2021 1:59 pm

Priority: High
Quote No: 109925
Order No: A03582101
Client Reference: Muriwai

Add. Client Ref:

Submitted By: Tom Harvey

Charge To: Pattle Delamore Partners Limited 18-Aug-2021 4:30 pm

Samples

No	Sample Name	Sample Type	Containers	Tests Requested
1	KC_SS01_0.1 10-Aug-2021	Soil	cGSoil	Composite Environmental Solid Samples
2	KC_SS02_0.1 10-Aug-2021	Soil	cGSoil	Composite Environmental Solid Samples
3	KC_SS03_0.1 10-Aug-2021	Soil	cGSoil	Composite Environmental Solid Samples
4	KC_SS04_0.1 10-Aug-2021	Soil	cGSoil	Composite Environmental Solid Samples
5	KC_SS01_0.3 10-Aug-2021	Soil	cGSoil	Hold Cold
6	KC_SS02_0.3 10-Aug-2021	Soil	cGSoil	Hold Cold
7	KC_SS03_0.3 10-Aug-2021	Soil	cGSoil	Hold Cold
8	KC_SS04_0.3 10-Aug-2021	Soil	cGSoil	Hold Cold
9	KC_SS05_0.1 10-Aug-2021	Soil	cGSoil	Composite Environmental Solid Samples
10	KC_SS06_0.1 10-Aug-2021	Soil	cGSoil	Composite Environmental Solid Samples
11	KC_SS07_0.1 10-Aug-2021	Soil	cGSoil	Composite Environmental Solid Samples
12	KC_SS08_0.1 10-Aug-2021	Soil	cGSoil	Composite Environmental Solid Samples
13	KC_SS05_0.3 10-Aug-2021	Soil	cGSoil	Hold Cold
14	KC_SS06_0.3 10-Aug-2021	Soil	cGSoil	Hold Cold
15	KC_SS07_0.3 10-Aug-2021	Soil	cGSoil	Hold Cold
16	KC_SS08_0.3 10-Aug-2021	Soil	cGSoil	Hold Cold
17	KC_SS09_0.1 10-Aug-2021	Soil	cGSoil	Composite Environmental Solid Samples
18	KC_SS10_0.1 10-Aug-2021	Soil	cGSoil	Composite Environmental Solid Samples
19	KC_SS11_0.1 10-Aug-2021	Soil	cGSoil	Composite Environmental Solid Samples
20	KC_SS12_0.1 10-Aug-2021	Soil	cGSoil	Composite Environmental Solid Samples
21	KC_SS09_0.3 10-Aug-2021	Soil	cGSoil	Hold Cold
22	KC_SS10_0.3 10-Aug-2021	Soil	cGSoil	Hold Cold
23	KC_SS11_0.3 10-Aug-2021	Soil	cGSoil	Hold Cold
24	KC_SS12_0.3 10-Aug-2021	Soil	cGSoil	Hold Cold
25	KC_SS13_0.1 10-Aug-2021	Soil	cGSoil	Composite Environmental Solid Samples
26	KC_SS14_0.1 10-Aug-2021	Soil	cGSoil	Composite Environmental Solid Samples
27	KC_SS15_0.1 10-Aug-2021	Soil	cGSoil	Composite Environmental Solid Samples
28	KC_SS16_0.1 10-Aug-2021	Soil	cGSoil	Composite Environmental Solid Samples
29	KC_SS13_0.3 10-Aug-2021	Soil	cGSoil	Hold Cold
30	KC_SS14_0.3 10-Aug-2021	Soil	cGSoil	Hold Cold
31	KC_SS15_0.3 10-Aug-2021	Soil	cGSoil	Hold Cold
32	KC_SS16_0.4 10-Aug-2021	Soil	cGSoil	Hold Cold
33	KC_SS17_0.1 10-Aug-2021	Soil	cGSoil	Composite Environmental Solid Samples
34	KC_SS18_0.1 10-Aug-2021	Soil	cGSoil	Composite Environmental Solid Samples
35	KC_SS19_0.1 10-Aug-2021	Soil	cGSoil	Composite Environmental Solid Samples
36	KC_SS20_0.1 10-Aug-2021	Soil	cGSoil	Composite Environmental Solid Samples
37	KC_SS17_0.3 10-Aug-2021	Soil	cGSoil	Hold Cold
38	KC_SS18_0.3 10-Aug-2021	Soil	cGSoil	Hold Cold

Samp	les			
No	Sample Name	Sample Type	Containers	Tests Requested
39	KC_SS19_0.25 10-Aug-2021	Soil	cGSoil	Hold Cold
40	KC_SS20_0.3 10-Aug-2021	Soil	cGSoil	Hold Cold
41	KC_SS21_0.1 10-Aug-2021	Soil	cGSoil	Composite Environmental Solid Samples
42	KC_SS22_0.1 10-Aug-2021	Soil	cGSoil	Composite Environmental Solid Samples
43	KC_SS23_0.1 10-Aug-2021	Soil	cGSoil	Composite Environmental Solid Samples
44	KC_SS24_0.1 10-Aug-2021	Soil	cGSoil	Composite Environmental Solid Samples
45	KC_SS21_0.25 10-Aug-2021	Soil	cGSoil	Hold Cold
46	KC_SS22_0.25 10-Aug-2021	Soil	cGSoil	Hold Cold
47	KC_SS23_0.3 10-Aug-2021	Soil	cGSoil	Hold Cold
48	KC_SS24_0.2 10-Aug-2021	Soil	cGSoil	Hold Cold
49	KC_SS25_0.1 10-Aug-2021	Soil	cGSoil	Composite Environmental Solid Samples
50	KC_SS26_0.1 10-Aug-2021	Soil	cGSoil	Composite Environmental Solid Samples
51	KC_SS27_0.1 10-Aug-2021	Soil	cGSoil	Composite Environmental Solid Samples
52	KC_SS28_0.1 10-Aug-2021	Soil	cGSoil	Composite Environmental Solid Samples
53	KC_SS25_0.3 10-Aug-2021	Soil	cGSoil	Hold Cold
54	KC_SS26_0.3 10-Aug-2021	Soil	cGSoil	Hold Cold
55	KC_SS27_0.3 10-Aug-2021	Soil	cGSoil	Hold Cold
56	KC_SS28_0.3 10-Aug-2021	Soil	cGSoil	Hold Cold
57	BH_SS01_0.1 10-Aug-2021	Soil	cGSoil	Heavy Metals, Screen Level
58	BH_SS01_0.3 10-Aug-2021	Soil	cGSoil	Hold Cold
59	BH_SS02_0.1 10-Aug-2021	Soil	cGSoil	Hold Cold
60	BH_SS02_0.3 10-Aug-2021	Soil	cGSoil	Heavy Metals, Screen Level
61	BH_SS03_0.1 10-Aug-2021	Soil	cGSoil	Heavy Metals, Screen Level
62	BH_SS03_0.3 10-Aug-2021	Soil	cGSoil	Hold Cold
63	BH_SS04_0.1 10-Aug-2021	Soil	cGSoil	Hold Cold
64	BH_SS04_0.3 10-Aug-2021	Soil	cGSoil	Heavy Metals, Screen Level
65	BH_SS05_0.1 10-Aug-2021	Soil	cGSoil	Heavy Metals, Screen Level
66	BH_SS05_0.3 10-Aug-2021	Soil	cGSoil	Hold Cold
67	BH_SS06_0.1 10-Aug-2021	Soil	cGSoil	Hold Cold
68	BH_SS06_0.3 11-Aug-2021	Soil	cGSoil	Heavy Metals, Screen Level
69	BH_SS07_0.1 11-Aug-2021	Soil	cGSoil	Hold Cold
70	BH_SS07_0.3 11-Aug-2021	Soil	cGSoil	Heavy Metals, Screen Level
71	BH_SS08_0.1 11-Aug-2021	Soil	cGSoil	Heavy Metals, Screen Level
72	BH_SS08_0.3 11-Aug-2021	Soil	cGSoil	Hold Cold
73	BH_SS09_0.1 11-Aug-2021	Soil	cGSoil	Hold Cold
74	BH_SS09_0.3 11-Aug-2021	Soil	cGSoil	Heavy Metals, Screen Level
75	BH_SS10_0.1 11-Aug-2021	Soil	cGSoil	Heavy Metals, Screen Level
76	BH_SS10_0.3 11-Aug-2021	Soil	cGSoil	Hold Cold
77	BH_SS11_0.1 11-Aug-2021	Soil	cGSoil	Hold Cold
78	BH_SS11_0.3 11-Aug-2021	Soil	cGSoil	Heavy Metals, Screen Level
79	BH_SS12_0.1 11-Aug-2021	Soil	cGSoil	Hold Cold
80	BH_SS12_0.3 11-Aug-2021	Soil	cGSoil	Heavy Metals, Screen Level
81	BH_SS13_0.1 11-Aug-2021	Soil	cGSoil	Hold Cold
82	BH_SS13_0.4 11-Aug-2021	Soil	cGSoil	Hold Cold
83	BH_SS14_0.1 11-Aug-2021	Soil	cGSoil	Hold Cold
84	BH_SS14_0.3 11-Aug-2021	Soil	cGSoil	Heavy Metals, Screen Level
85	BH_SS15_0.1 11-Aug-2021	Soil	cGSoil	Heavy Metals, Screen Level
86	BH_SS15_0.3 11-Aug-2021	Soil	cGSoil	Hold Cold
87	BH_SS16_0.1 11-Aug-2021	Soil	cGSoil	Heavy Metals, Screen Level
88	BH_SS16_0.3 11-Aug-2021	Soil	cGSoil	Hold Cold
89	BH_SS17_0.1 11-Aug-2021	Soil	cGSoil	Heavy Metals, Screen Level
90	BH_SS17_0.3 10-Aug-2021	Soil	cGSoil	Hold Cold
91	BH_SS18_0.1 10-Aug-2021	Soil	cGSoil	Heavy Metals, Screen Level
92	BH_SS18_0.3 11-Aug-2021	Soil	cGSoil	Hold Cold
		I .	1	1

Sam	Samples						
No	Sample Name	Sample Type	Containers	Tests Requested			
93	BH_SS19_0.1 11-Aug-2021	Soil	cGSoil	Hold Cold			
94	BH_SS19_0.3 11-Aug-2021	Soil	cGSoil	Heavy Metals, Screen Level			
95	BH_SS20_0.1 11-Aug-2021	Soil	cGSoil	Heavy Metals, Screen Level			
96	BH_SS20_0.3 11-Aug-2021	Soil	cGSoil	Hold Cold			
97	BH_SS21_0.1 11-Aug-2021	Soil	cGSoil	Hold Cold			
98	BH_SS21_0.3 11-Aug-2021	Soil	cGSoil	Heavy Metals, Screen Level			
99	BH_SS22_0.1 11-Aug-2021	Soil	cGSoil	Heavy Metals, Screen Level			
100	BH_SS22_0.3 11-Aug-2021	Soil	cGSoil	Hold Cold			
101	Composite of KC_SS01_0.1, KC_SS02_0.1, KC_SS03_0.1 and KC_SS04_0.1	Soil	OrgComp	Heavy Metals, Screen Level; Organochlorine Pesticides Screening in Soil			
102	Composite of KC_SS05_0.1, KC_SS06_0.1, KC_SS07_0.1 and KC_SS08_0.1	Soil	OrgComp	Heavy Metals, Screen Level; Organochlorine Pesticides Screening in Soil			
103	Composite of KC_SS09_0.1, KC_SS10_0.1, KC_SS11_0.1 and KC_SS12_0.1	Soil	OrgComp	Heavy Metals, Screen Level; Organochlorine Pesticides Screening in Soil			
104	Composite of KC_SS13_0.1, KC_SS14_0.1, KC_SS15_0.1 and KC_SS16_0.1	Soil	OrgComp	Heavy Metals, Screen Level; Organochlorine Pesticides Screening in Soil			
105	Composite of KC_SS17_0.1, KC_SS18_0.1, KC_SS19_0.1 and KC_SS20_0.1	Soil	OrgComp	Heavy Metals, Screen Level; Organochlorine Pesticides Screening in Soil			
106	Composite of KC_SS21_0.1, KC_SS22_0.1, KC_SS23_0.1 and KC_SS24_0.1	Soil	OrgComp	Heavy Metals, Screen Level; Organochlorine Pesticides Screening in Soil			
107	Composite of KC_SS25_0.1, KC_SS26_0.1, KC_SS27_0.1 and KC_SS28_0.1	Soil	OrgComp	Heavy Metals, Screen Level; Organochlorine Pesticides Screening in Soil			

Summary of Methods

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively simple matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis. A detection limit range indicates the lowest and highest detection limits in the associated suite of analytes. A full listing of compounds and detection limits are available from the laboratory upon request. Unless otherwise indicated, analyses were performed at Hill Laboratories, 28 Duke Street, Frankton, Hamilton 3204.

Sample Type: Soil						
Test	Method Description	Default Detection Limit	Sample No			
Environmental Solids Sample Drying	Air dried at 35°C Used for sample preparation. May contain a residual moisture content of 2-5%.	-	57, 60-61, 64-65, 68, 70-71, 74-75, 78, 80, 84-85, 87, 89, 91, 94-95, 98-99, 101-107			
Heavy Metals, Screen Level	Dried sample, < 2mm fraction. Nitric/Hydrochloric acid digestion US EPA 200.2. Complies with NES Regulations. ICP-MS screen level, interference removal by Kinetic Energy Discrimination if required.	0.10 - 4 mg/kg dry wt	57, 60-61, 64-65, 68, 70-71, 74-75, 78, 80, 84-85, 87, 89, 91, 94-95, 98-99, 101-107			
Organochlorine Pesticides Screening in Soil	Sonication extraction, GC-ECD analysis. Tested on as received sample. In-house based on US EPA 8081.	0.010 - 0.06 mg/kg dry wt	101-107			
Dry Matter (Env)	Dried at 103°C for 4-22hr (removes 3-5% more water than air dry), gravimetry. (Free water removed before analysis, non-soil objects such as sticks, leaves, grass and stones also removed). US EPA 3550.	0.10 g/100g as rcvd	101-107			

Private Bag 3205

T 0508 HILL LAB (44 555 22) +64 7 858 2000 mail@hill-labs.co.nz W www.hill-laboratories.com

Certificate of Analysis

Page 1 of 4

Client: Contact: Pattle Delamore Partners Limited

Stefan Yap

C/- Pattle Delamore Partners Limited

PO Box 9528 Newmarket Auckland 1149 Lab No: 2677154 **Date Received:** 13-Aug-2021 **Date Reported:** 18-Aug-2021 109925 **Quote No: Order No:** A03582101 **Client Reference:** Muriwai Submitted By: Tom Harvey

Sample Type: Soil						
	Sample Name:	BH_SS01_0.1	BH_SS02_0.3	BH_SS03_0.1	BH_SS04_0.3	BH_SS05_0.1
	-	10-Aug-2021	10-Aug-2021	10-Aug-2021	10-Aug-2021	10-Aug-2021
	Lab Number:	2677154.57	2677154.60	2677154.61	2677154.64	2677154.65
Heavy Metals, Screen Level						
Total Recoverable Arsenic	mg/kg dry wt	4	3	4	3	3
Total Recoverable Cadmium	mg/kg dry wt	0.30	0.14	0.48	0.15	0.35
Total Recoverable Chromium	0 0 ,	23	22	21	18	18
Total Recoverable Copper	mg/kg dry wt	13	8	14	7	11
Total Recoverable Lead	mg/kg dry wt	10.3	11.4	210	24	27
Total Recoverable Nickel	mg/kg dry wt	8	8	7	6	6
Total Recoverable Zinc	mg/kg dry wt	73	67	230	54	63
	Sample Name:	BH_SS06_0.3 11-Aug-2021	BH_SS07_0.3 11-Aug-2021	BH_SS08_0.1 11-Aug-2021	BH_SS09_0.3 11-Aug-2021	BH_SS10_0.1 11-Aug-2021
	Lab Number:	2677154.68	2677154.70	2677154.71	2677154.74	2677154.75
Heavy Metals, Screen Level						
Total Recoverable Arsenic	mg/kg dry wt	3	5	4	5	3
Total Recoverable Cadmium	mg/kg dry wt	0.13	0.11	0.25	0.15	0.26
Total Recoverable Chromium	mg/kg dry wt	20	27	21	21	18
Total Recoverable Copper	mg/kg dry wt	7	7	12	8	9
Total Recoverable Lead	mg/kg dry wt	19.2	11.2	32	25	29
Total Recoverable Nickel	mg/kg dry wt	6	6	7	5	6
Total Recoverable Zinc	mg/kg dry wt	54	57	77	66	70
	Sample Name:	BH_SS11_0.3	BH_SS12_0.3	BH_SS14_0.3	BH_SS15_0.1	BH_SS16_0.1
	Lab Number:	11-Aug-2021 2677154.78	11-Aug-2021 2677154.80	11-Aug-2021 2677154.84	11-Aug-2021 2677154.85	11-Aug-2021 2677154.87
Heavy Metals, Screen Level	Lab Humber.	2077101.70	2011 10 1.00	2011101101	2077 10 1.00	2011 10 1.01
Total Recoverable Arsenic	mg/kg dry wt	5	4	3	3	3
Total Recoverable Cadmium	mg/kg dry wt	0.17	0.12	< 0.10	0.27	0.32
Total Recoverable Chromium	- ,	24	23	20	18	17
Total Recoverable Copper	mg/kg dry wt	11	8	6	12	9
Total Recoverable Lead	mg/kg dry wt	22	8.5	7.3	42	24
Total Recoverable Nickel	mg/kg dry wt	6	8	6	6	6
Total Recoverable Zinc	mg/kg dry wt	77	72	55	71	86
- stail 1 toos 1 stable	0 0 7					
	Sample Name:	BH_SS17_0.1 11-Aug-2021	BH_SS18_0.1 10-Aug-2021	BH_SS19_0.3 11-Aug-2021	BH_SS20_0.1 11-Aug-2021	BH_SS21_0.3 11-Aug-2021
Llegar Metele Communication	Lab Number:	2677154.89	2677154.91	2677154.94	2677154.95	2677154.98
Heavy Metals, Screen Level						
Total Recoverable Arsenic	mg/kg dry wt	4	4	3	4	4
Total Recoverable Cadmium	mg/kg dry wt	0.30	0.23	0.11	0.27	< 0.10
Total Recoverable Chromium	3 3 7	20	17	19	17	19
Total Recoverable Copper	mg/kg dry wt	10	10	7	10	6
Total Recoverable Lead	mg/kg dry wt	21	7.9	77	8.9	15.1

This Laboratory is accredited by International Accreditation New Zealand (IANZ), which represents New Zealand in the International Laboratory Accreditation Cooperation (ILAC). Through the ILAC Mutual Recognition Arrangement (ILAC-MRA) this accreditation is internationally recognised. The tests reported herein have been performed in accordance with the terms of accreditation, with the exception of tests marked * or any comments and interpretations, which are not accredited.

Sample Type: Soil						
	Sample Name:	BH_SS17_0.1 11-Aug-2021	BH_SS18_0.1 10-Aug-2021	BH_SS19_0.3 11-Aug-2021	BH_SS20_0.1 11-Aug-2021	BH_SS21_0.3 11-Aug-2021
	Lab Number:	2677154.89	2677154.91	2677154.94	2677154.95	2677154.98
Heavy Metals, Screen Level				J.		J
Total Recoverable Nickel	mg/kg dry wt	7	7	5	6	5
Total Recoverable Zinc	mg/kg dry wt	83	62	53	60	40
	0 0 7		2			
	Sample Name:	BH_SS22_0.1 11-Aug-2021	Composite of KC_SS01_0.1, KC_SS02_0.1, KC_SS03_0.1	Composite of KC_SS05_0.1, KC_SS06_0.1, KC_SS07_0.1 and	Composite of KC_SS09_0.1, KC_SS10_0.1, KC_SS11_0.1 and	Composite of KC_SS13_0.1, KC_SS14_0.1, KC_SS15_0.1 and KC_SS15_0.4
	Lab Number:	2677154.99	KC_SS04_0.1 2677154.101	KC_SS08_0.1 2677154.102	KC_SS12_0.1 2677154.103	KC_SS16_0.1 2677154.104
Individual Tests	Lab Number.	2011104.00	2011134.101	2011104.102	2011104.100	2011134.104
Dry Matter	g/100g as rcvd	-	75	73	73	71
	g/100g as 10vu	-	75	73	73	71
Heavy Metals, Screen Level	, ,		_			_
Total Recoverable Arsenic	mg/kg dry wt	4	3	4	6	5
Total Recoverable Cadmium	mg/kg dry wt	0.27	0.32	0.36	0.40	0.41
Total Recoverable Chromium	3.3.7	19	11	11	17	16
Total Recoverable Copper	mg/kg dry wt	8	7	9	9	13
Total Recoverable Lead	mg/kg dry wt	12.7	10.2	8.7	11.5	11.7
Total Recoverable Nickel	mg/kg dry wt	8	3	4	4	5
Total Recoverable Zinc	mg/kg dry wt	58	24	29	32	52
Organochlorine Pesticides So	creening in Soil					
Aldrin	mg/kg dry wt	-	< 0.013	< 0.014	< 0.014	< 0.014
alpha-BHC	mg/kg dry wt	-	< 0.013	< 0.014	< 0.014	< 0.014
beta-BHC	mg/kg dry wt	-	< 0.013	< 0.014	< 0.014	< 0.014
delta-BHC	mg/kg dry wt	-	< 0.013	< 0.014	< 0.014	< 0.014
gamma-BHC (Lindane)	mg/kg dry wt	-	< 0.013	< 0.014	< 0.014	< 0.014
cis-Chlordane	mg/kg dry wt	-	< 0.013	< 0.014	< 0.014	< 0.014
trans-Chlordane	mg/kg dry wt		< 0.013	< 0.014	< 0.014	< 0.014
2,4'-DDD	mg/kg dry wt		< 0.013	< 0.014	< 0.014	< 0.014
4,4'-DDD	mg/kg dry wt		< 0.013	< 0.014	< 0.014	< 0.014
2,4'-DDE		-	< 0.013	< 0.014	< 0.014	< 0.014
	mg/kg dry wt	-				
4,4'-DDE	mg/kg dry wt	-	< 0.013	< 0.014	< 0.014	< 0.014
2,4'-DDT	mg/kg dry wt	-	< 0.013	< 0.014	< 0.014	< 0.014
4,4'-DDT	mg/kg dry wt	-	< 0.013	< 0.014	< 0.014	< 0.014
Total DDT Isomers	mg/kg dry wt	-	< 0.08	< 0.08	< 0.09	< 0.09
Dieldrin	mg/kg dry wt	-	< 0.013	< 0.014	< 0.014	< 0.014
Endosulfan I	mg/kg dry wt	-	< 0.013	< 0.014	< 0.014	< 0.014
Endosulfan II	mg/kg dry wt	-	< 0.013	< 0.014	< 0.014	< 0.014
Endosulfan sulphate	mg/kg dry wt	-	< 0.013	< 0.014	< 0.014	< 0.014
Endrin	mg/kg dry wt	-	< 0.013	< 0.014	< 0.014	< 0.014
Endrin aldehyde	mg/kg dry wt	-	< 0.013	< 0.014	< 0.014	< 0.014
Endrin ketone	mg/kg dry wt	-	< 0.013	< 0.014	< 0.014	< 0.014
Heptachlor	mg/kg dry wt	-	< 0.013	< 0.014	< 0.014	< 0.014
Heptachlor epoxide	mg/kg dry wt	-	< 0.013	< 0.014	< 0.014	< 0.014
Hexachlorobenzene	mg/kg dry wt	-	< 0.013	< 0.014	< 0.014	< 0.014
Methoxychlor	mg/kg dry wt	-	< 0.013	< 0.014	< 0.014	< 0.014
	Cample Name	Composite of	Composite of	Composite of		
	Sample Name:	KC_SS17_0.1, KC_SS18_0.1, KC_SS19_0.1 and KC_SS20_0.1	KC_SS21_0.1, KC_SS22_0.1, KC_SS23_0.1 and KC_SS24_0.1	KC_SS25_0.1, KC_SS26_0.1, KC_SS27_0.1 and KC_SS28_0.1		
La distance Trans	Lab Number:	2677154.105	2677154.106	2677154.107		
Individual Tests	465					Т
Dry Matter	g/100g as rcvd	72	73	71	-	-
Heavy Metals, Screen Level						
Total Recoverable Arsenic	mg/kg dry wt	5	7	5	-	-
Total Recoverable Cadmium	mg/kg dry wt	0.40	0.34	0.37	-	-

Sample Type: Soil						<u> </u>
	Sample Name:	Composite of KC_SS17_0.1, KC_SS18_0.1, KC_SS19_0.1 and KC_SS20_0.1	Composite of KC_SS21_0.1, KC_SS22_0.1, KC_SS23_0.1 and KC_SS24_0.1	Composite of KC_SS25_0.1, KC_SS26_0.1, KC_SS27_0.1 and KC_SS28_0.1		
	Lab Number:	2677154.105	2677154.106	2677154.107		
Heavy Metals, Screen Level						
Total Recoverable Chromium	mg/kg dry wt	16	17	16	-	-
Total Recoverable Copper	mg/kg dry wt	12	9	19	-	-
Total Recoverable Lead	mg/kg dry wt	15.5	13.1	12.8	-	-
Total Recoverable Nickel	mg/kg dry wt	6	6	6	-	-
Total Recoverable Zinc	mg/kg dry wt	40	31	80	-	-
Organochlorine Pesticides So	creening in Soil					
Aldrin	mg/kg dry wt	< 0.014	< 0.014	< 0.014	-	-
alpha-BHC	mg/kg dry wt	< 0.014	< 0.014	< 0.014	-	-
beta-BHC	mg/kg dry wt	< 0.014	< 0.014	< 0.014	-	-
delta-BHC	mg/kg dry wt	< 0.014	< 0.014	< 0.014	-	-
gamma-BHC (Lindane)	mg/kg dry wt	< 0.014	< 0.014	< 0.014	-	-
cis-Chlordane	mg/kg dry wt	< 0.014	< 0.014	< 0.014	-	-
trans-Chlordane	mg/kg dry wt	< 0.014	< 0.014	< 0.014	-	-
2,4'-DDD	mg/kg dry wt	< 0.014	< 0.014	< 0.014	-	-
4,4'-DDD	mg/kg dry wt	< 0.014	< 0.014	< 0.014	-	-
2,4'-DDE	mg/kg dry wt	< 0.014	< 0.014	< 0.014	-	-
4,4'-DDE	mg/kg dry wt	< 0.014	< 0.014	< 0.014	-	-
2,4'-DDT	mg/kg dry wt	< 0.014	< 0.014	< 0.014	-	-
4,4'-DDT	mg/kg dry wt	< 0.014	< 0.014	< 0.014	-	-
Total DDT Isomers	mg/kg dry wt	< 0.09	< 0.08	< 0.09	-	-
Dieldrin	mg/kg dry wt	< 0.014	< 0.014	< 0.014	-	-
Endosulfan I	mg/kg dry wt	< 0.014	< 0.014	< 0.014	-	-
Endosulfan II	mg/kg dry wt	< 0.014	< 0.014	< 0.014	-	-
Endosulfan sulphate	mg/kg dry wt	< 0.014	< 0.014	< 0.014	-	-
Endrin	mg/kg dry wt	< 0.014	< 0.014	< 0.014	-	-
Endrin aldehyde	mg/kg dry wt	< 0.014	< 0.014	< 0.014	-	-
Endrin ketone	mg/kg dry wt	< 0.014	< 0.014	< 0.014	-	-
Heptachlor	mg/kg dry wt	< 0.014	< 0.014	< 0.014	-	-
Heptachlor epoxide	mg/kg dry wt	< 0.014	< 0.014	< 0.014	-	-
Hexachlorobenzene	mg/kg dry wt	< 0.014	< 0.014	< 0.014	-	-
Methoxychlor	mg/kg dry wt	< 0.014	< 0.014	< 0.014	-	-

Summary of Methods

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively simple matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis. A detection limit range indicates the lowest and highest detection limits in the associated suite of analytes. A full listing of compounds and detection limits are available from the laboratory upon request. Unless otherwise indicated, analyses were performed at Hill Laboratories, 28 Duke Street, Frankton, Hamilton 3204.

Sample Type: Soil			
Test	Method Description	Default Detection Limit	Sample No
Environmental Solids Sample Drying*	Air dried at 35°C Used for sample preparation. May contain a residual moisture content of 2-5%.	-	57, 60-61, 64-65, 68, 70-71, 74-75, 78, 80, 84-85, 87, 89, 91, 94-95, 98-99, 101-107
Heavy Metals, Screen Level	Dried sample, < 2mm fraction. Nitric/Hydrochloric acid digestion US EPA 200.2. Complies with NES Regulations. ICP-MS screen level, interference removal by Kinetic Energy Discrimination if required.	0.10 - 4 mg/kg dry wt	57, 60-61, 64-65, 68, 70-71, 74-75, 78, 80, 84-85, 87, 89, 91, 94-95, 98-99, 101-107

Sample Type: Soil							
Test	Method Description	Default Detection Limit	Sample No				
Organochlorine Pesticides Screening in Soil	Sonication extraction, GC-ECD analysis. Tested on as received sample. In-house based on US EPA 8081.	0.010 - 0.06 mg/kg dry wt	101-107				
Dry Matter (Env)	Dried at 103°C for 4-22hr (removes 3-5% more water than air dry), gravimetry. (Free water removed before analysis, non-soil objects such as sticks, leaves, grass and stones also removed). US EPA 3550.	0.10 g/100g as rcvd	101-107				

These samples were collected by yourselves (or your agent) and analysed as received at the laboratory.

Testing was completed between 17-Aug-2021 and 18-Aug-2021. For completion dates of individual analyses please contact the laboratory.

Samples are held at the laboratory after reporting for a length of time based on the stability of the samples and analytes being tested (considering any preservation used), and the storage space available. Once the storage period is completed, the samples are discarded unless otherwise agreed with the customer. Extended storage times may incur additional charges.

This certificate of analysis must not be reproduced, except in full, without the written consent of the signatory.

Viren

Kim Harrison MSc

Client Services Manager - Environmental

Hornby

T 0508 HILL LAB (44 555 22) +64 7 858 2000 E mail@hill-labs.co.nz

Certificate of Analysis

Page 1 of 2

A2Pv1

Client: Pattle Delamore Partners Limited

Contact: Stefan Yap

C/- Pattle Delamore Partners Limited

PO Box 9528 Newmarket Auckland 1149 Lab No: 2677351 **Date Received:** 13-Aug-2021 17-Aug-2021 **Date Reported: Quote No:** 109925 **Order No:** A03582101

Client Reference: Muriwai **Submitted By:** Tom Harvey

Sample Type: Soil								
Sample Name	Lab Number	As Received Weight (g)	Dry Weight (g)	<2mm Subsample Weight (g dry wt)	Asbestos Presence / Absence	Description of Asbestos Form		
BH_SS01_0.1	2677351.1	851.1	651.8	58.0	Asbestos NOT detected.	-		
BH_SS02_0.3	2677351.2	922.4	747.2	57.3	Asbestos NOT detected.	-		
BH_SS03_0.1	2677351.3	827.5	636.3	59.9	Asbestos NOT detected.	-		
BH_SS04_0.3	2677351.4	958.0	787.1	50.6	Asbestos NOT detected.	-		
BH_SS05_0.1	2677351.5	883.8	680.4	53.8	Asbestos NOT detected.	-		
BH_SS06_0.3	2677351.6	1,012.2	833.6	55.3	Asbestos NOT detected.	-		
BH_SS07_0.3	2677351.7	892.4	740.5	58.4	Asbestos NOT detected.	-		
BH_SS08_0.1	2677351.8	845.0	635.6	57.3	Asbestos NOT detected.	-		
BH_SS09_0.3	2677351.9	964.4	810.9	55.3	Asbestos NOT detected.	-		
BH_SS10_0.1	2677351.10	863.9	661.5	52.1	Asbestos NOT detected.	-		
BH_SS11_0.3	2677351.11	935.0	777.8	54.6	Asbestos NOT detected.	-		
BH_SS12_0.3	2677351.12	970.5	814.6	56.1	Asbestos NOT detected.	-		
BH_SS13_0.1	2677351.13	760.8	587.5	56.0	Asbestos NOT detected.	-		
BH_SS14_0.3	2677351.14	1,064.8	876.3	52.1	Asbestos NOT detected.	-		
BH_SS15_0.1	2677351.15	805.3	589.9	57.1	Asbestos NOT detected.	-		
BH_SS16_0.1	2677351.16	944.4	715.4	56.1	Asbestos NOT detected.	-		
BH_SS17_0.1	2677351.17	904.3	718.1	56.8	Asbestos NOT detected.	-		
BH_SS18_0.1	2677351.18	936.7	702.7	58.1	Asbestos NOT detected.	-		
BH_SS19_0.3	2677351.19	916.8	747.8	57.7	Asbestos NOT detected.	-		
BH_SS20_0.1	2677351.20	802.0	608.8	53.6	Asbestos NOT detected.	-		
BH_SS21_0.3	2677351.21	1,004.6	835.8	59.6	Asbestos NOT detected.	-		
BH_SS22_0.1	2677351.22	793.2	608.5	54.4	Asbestos NOT detected.	-		

- Loose fibres (Minor) One or two fibres/fibre bundles identified during analysis by stereo microscope/PLM.
- · Loose fibres (Major) Three or more fibres/fibre bundles identified during analysis by stereo microscope/PLM.
- ACM Debris (Minor) One or two small (<2mm) pieces of material attached to fibres identified during analysis by stereo microscope/PLM.
- ACM Debris (Major) Large (>2mm) piece, or more than three small (<2mm) pieces of material attached to fibres identified during analysis by stereo microscope/PLM.
- · Unknown Mineral Fibres Mineral fibres of unknown type detected by polarised light microscopy including dispersion staining. The fibres detected may or may not be asbestos fibres. To confirm the identities, another independent analytical technique may be required.
- Trace Trace levels of asbestos, as defined by AS4964-2004.

For further details, please contact the Asbestos Team.

Summary of Methods

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively simple matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis. A detection limit range indicates the lowest and highest detection limits in the associated suite of analytes. A full listing of compounds and detection limits are available from the laboratory upon request. Unless otherwise indicated, analyses were performed at Hill Laboratories, 28 Duke Street, Frankton, Hamilton 3204.

Sample Type: Soil			
Test	Method Description	Default Detection Limit	Sample No
Asbestos in Soil			

Sample Type: Soil			
Test	Method Description	Default Detection Limit	Sample No
As Received Weight	Measurement on analytical balance. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch.	0.1 g	1-22
Dry Weight	Sample dried at 100 to 105°C, measurement on balance. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch.	0.1 g	1-22
<2mm Subsample Weight	Sample dried at 100 to 105°C, weight of <2mm sample fraction taken for asbestos identification if less than entire fraction. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch.	-	1-22
Asbestos Presence / Absence	Examination using Low Powered Stereomicroscopy followed by 'Polarised Light Microscopy' including 'Dispersion Staining Techniques'. Analysed at Hill Laboratories - Asbestos; 101c Waterloo Road, Christchurch. AS 4964 (2004) - Method for the Qualitative Identification of Asbestos in Bulk Samples.	0.01%	1-22
Description of Asbestos Form	Description of asbestos form and/or shape if present.	-	1-22

These samples were collected by yourselves (or your agent) and analysed as received at the laboratory.

Testing was completed on 17-Aug-2021. For completion dates of individual analyses please contact the laboratory.

Samples are held at the laboratory after reporting for a length of time based on the stability of the samples and analytes being tested (considering any preservation used), and the storage space available. Once the storage period is completed, the samples are discarded unless otherwise agreed with the customer. Extended storage times may incur additional charges.

This certificate of analysis must not be reproduced, except in full, without the written consent of the signatory.

John Keneth Paglingayen BApSc Laboratory Technician - Asbestos

Appendix F: UCL Calculation of Arsenic Concentrations of Soil within the Sheep Spray Shower & Woolshed Area

	A B C	D E	F tics for Unce	G ensored Full	H Data Sets	l	J	K		L
1				0110010u 1 uii						
2	User Selected Options	S								
3	Date/Time of Computation	20/10/2021 10:37:04 am								
4	From File	WorkSheet.xls								
5	Full Precision	OFF								
6	Confidence Coefficient	95%								
7 8	Number of Bootstrap Operations	2000								
9	The state of the s									
10	C0									
11 12										
13			General	Statistics						
14	Tota	al Number of Observations	11			Numbe	er of Distin	ct Observat	ions	9
15						Numbe	er of Missir	ng Observat	ions	0
16		Minimum	2						lean	12.64
17		Maximum	72						dian	6
18		SD	20.04				Sto	d. Error of M		6.041
		Coefficient of Variation	1.586					Skewr		3.119
19			555					3.000		
20			Normal (GOF Test						
21		Shapiro Wilk Test Statistic	0.504			Shapiro W	/ilk GOF T	est		
22		Shapiro Wilk Critical Value	0.85					icance Leve	ı	
23	3 // 3	Lilliefors Test Statistic	0.85		Data NO		GOF Tes		•	
24	r	5% Lilliefors Critical Value	0.33		Data No			icance Leve	ı	
25				5% Significar		i Normai at	3 /6 Sigitili	icance Leve	1	
26		Data Not	Normal at 5	7/0 Signinical	ICE LEVEI					
27		Λοι	sumina Norr	mal Distributi	ion					
28	050/ N	lormal UCL	sulling Non			UCLs (Adjı	istad for S	Skownoco)		
29	95% N		22 E0					-)0E)	20.64
30		95% Student's-t UCL	23.59					CL (Chen-19		28.64
31						95% Modif	iea-t UCL	(Johnson-19	9/8)	24.53
32										
33		4 D.T. (0) 11 11		GOF Test						
34		A-D Test Statistic	1.197			son-Darling				
35		5% A-D Critical Value	0.751	D	ata Not Gam			-	e Leve	l
36		K-S Test Statistic	0.314					GOF Test		
37		5% K-S Critical Value	0.262		ata Not Gam		ited at 5%	Significance	e Leve	l
38		Data Not Gamm	na Distribute	ed at 5% Sig	nificance Lev	/el				
39										
40				Statistics						
41		k hat (MLE)	1.04					corrected M	-	0.817
42		Theta hat (MLE)	12.15			Theta	•	corrected M		15.47
43		nu hat (MLE)	22.88					(bias correc	- 1	17.97
44	N	MLE Mean (bias corrected)	12.64					(bias correc		13.98
45		<u> </u>				Approximat	e Chi Squa	are Value (0	.05)	9.372
46	Adju	sted Level of Significance	0.0278			А	djusted C	hi Square V	alue	8.377
47										
48		Ass	uming Gam	nma Distribut	tion					
49	95% Approximate Gamm	a UCL (use when n>=50))	24.23		95% Adj	justed Gam	ıma UCL (use when n	<50)	27.11
50				1						
51			Lognorma	I GOF Test						
52	;	Shapiro Wilk Test Statistic	0.884		Shap	iro Wilk Lo	gnormal G	OF Test		
53	5% 8	Shapiro Wilk Critical Value	0.85		Data appea	r Lognorma	ıl at 5% Siç	gnificance L	evel	
		Lilliefors Test Statistic	0.229		Lill	iefors Logn	ormal GO	F Test		
54	l	5% Lilliefors Critical Value	0.267		Data appea				evel	
	 									
55	,	Data appear	Lognormal	at 5% Signif	icance Level					
54 55 56 57			Lognormal	at 5% Signif	icance Level					
55				at 5% Signif	icance Level					

	Α	В	С	D	E	F	G	Н	I	J	K	L 1.984	
59					0.693	Mean of logged Data							
60	Maximum of Logged Data					4.277	4.277 SD of logged Data						
61													
62							rmal Distribu	ution					
63					95% H-UCL	26.72				Chebyshev (,	20.39	
64				Chebyshev (24.76		30.82					
65			99%	Chebyshev (MVUE) UCL	42.74							
66													
67					•		tion Free UC						
68				Data appea	r to follow a l	Discernible [Distribution a	t 5% Signifi	cance Level				
69													
70												23.59	
71					% CLT UCL	22.57		95% Jackknife UCL					
72				Standard Bo	-	22.13	95% Bootstrap-t UCL					80.26 24.18	
73				95% Hall's Bo		76.49	·						
74				95% BCA Bo		31.27							
75				nebyshev(Me	,	30.76				,		38.97	
76	97.5% Chebyshev(Mean, Sd) UCL 50.36 99% Chebyshev(Mean, Sd) UCL									72.75			
77													
78		Suggested UCL to Use											
79					95% H-UCL	26.72							
80													
81	Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.												
82	These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and laci (2002)												
83	and Singh and Singh (2003). However, simulations results will not cover all Real World data sets.												
84	For additional insight the user may want to consult a statistician.												
85													
86				UCL compute									
87		H-statistic often results in unstable (both high and low) values of UCL95 as shown in examples in the Technical Guide.											
88		It is therefore recommended to avoid the use of H-statistic based 95% UCLs.											
89	Use of nonparametric methods are preferred to compute UCL95 for skewed data sets which do not follow a gamma distribution.).			
90													

Appendix G: UCL Calculation of Arsenic Concentrations of Soil within the Treated Timber Storage Area

Coefficient of Variation 0.926 Skewness 0.908		A B C		E Static	F Ince	G	H Data Sate	I	J	K	L		
Second Computation 109/09/2011/221:19 pm 109/09/2011/2011/2011/2011/2011/2011/201	-					incorou i un							
Date Time of Computation 1098/2011 12 2±16 pm		User Selected Ontions	•										
Filth Patients OFF		·		l6 pm									
Full Precision OFF		•		. С р									
Confidence Coefficient 95%													
Number of Bootstrap Operations 2000			_										
10 10 10 10 10 10 10 10													
100 101													
1908													
		C0											
19													
15					General S	Statistics							
15		Total	Number of Observ	ations	12			Numbe	of Distinct C	Observations	11		
15								Number	of Missing C	Observations	0		
Maximum 94			Mir	nimum	4					Mean	32.83		
18					94								
Coefficient of Variation 0.926 Skewness 0.908 Skewness 0.908					30.41				Std. E		8.777		
			Coefficient of Va								0.908		
Shapiro Wilk Test Statistic 0.842													
Shapiro Wilk Test Statistic 0.842					Normal G	OF Test							
22 Sk Shapiro Wilk Critical Value 0.859 Data Not Normal at 5% Significance Level		ļ S	Shapiro Wilk Test S	tatistic				Shapiro Wi	lk GOF Test				
			·				Data No	-					
Data appear Approximate Normal at 5% Significance Level		370 0	<u> </u>				244 110						
Data appear Approximate Normal at 5% Significance Level					-		Data anne			ance I evel			
Assuming Normal UCL Sys Widen S		-											
28 Assuming Normal Distribution 29 95% Normal UCL 48.6 95% UCLs (Adjusted-CLT UCL (Chen-1995) 49.73 31 95% Modified-t UCL (Johnson-1978) 48.98 32 Camma GOF Test 33 A-D Test Statistic 0.497 Anderson-Darling Gamma GOF Test 36 6 K-S Test Statistic 0.197 Kolmogrov-Smirnoff Gamma GOF Test 37 5 K-S Critical Value 0.251 Detected data appear Gamma Distributed at 5% Significance Level 38 Detected data appear Gamma Distributed at 5% Significance Level 39 Samma Distributed at 5% Significance Level 40 Camma Distributed at 5% Significance Level 41 R k star (bias corrected MLE) 0.973 42 The hat (MLE) 2.283 M k star (bias corrected MLE) 0.973 42 The hat (MLE) 2.283 A papear Lognormal at Si Significance Level 0.293 </td <td></td> <td></td> <td>Data appe</td> <td>аі Дррі</td> <td>OXIIIIale 1401</td> <td>iliai at 5 /0 C</td> <td>olyminicanice i</td> <td>-6461</td> <td></td> <td></td> <td></td>			Data appe	аі Дррі	OXIIIIale 1401	iliai at 5 /0 C	olyminicanice i	-6461					
95% Normal UCL 95% UCLs (Adjusted for Skewness) 30 95% Normal UCL 48.6 95% Adjusted-CLT UCL (Chen-1995) 49.73 31 95% Modified+ UCL (Johnson-1978) 48.98 32 33 Gamma GOF Test 34 A-D Test Statistic 0.497 Anderson-Darling Gamma GOF Test 35 5% A-D Critical Value 0.752 Detected data appear Gamma Distributed at 5% Significance Level Kolmogrov-Smilroff Gamma GOF Test 36 K-S Test Statistic 0.197 Kolmogrov-Smilroff Gamma GOF Test 37 5% K-S Critical Value 0.251 Detected data appear Gamma Distributed at 5% Significance Level Revel 41 A Reversion British B				٨٥٨	numina Norn	aal Diatribut	ion						
30 95% Student's-t UCL 48.6 95% Adjusted-CLT UCL (Chen-1995) 49.73 31 95% Modified-t UCL (Johnson-1978) 48.98 32 33		0E% N	ormal LICI	A9:	sulling North	ומו טוטנווטענ		LICL o (Adiu	stad for Ska	1(DOCC)			
33		95% NO		* I I C I	40 C			• • •			40.72		
Section			95% Student's	-t UCL	48.6			-		`			
33 Gamma GOF Test 34 A-D Test Statistic 0.497 Anderson-Darling Gamma GOF Test 35 5% A-D Critical Value 0.797 Detected data appear Gamma Distributed at 5% Significance Level 36 CRANGE OF TEST STATISTICS OF TEST STATISTIC								95% Modifie	ea-t UCL (Jo	nnson-1978)	48.98		
A-D Test Statistic 0.497	32												
Section Sec						GOF Test							
36 K. Test Statistic 0.197 Kolmogrov-Smirnoff Gamma GOF Test 37 5% K-S Critical Value 0.251 Detected data appear Gamma Distributed at 5% Significance Level 38 Detected data appear Gamma Distributed at 5% Significance Level 39 Camma Statistics 41 A hat (MLE) 1.223 k star (bias corrected MLE) 0.973 42 Theta hat (MLE) 26.84 Theta star (bias corrected MLE) 33.29 43 MLE Mean (bias corrected) 23.35 Approximate Chi Square Value (0.05) 13.35 44 MLE Mean (bias corrected) 32.93 Approximate Chi Square Value (0.05) 13.35 46 Adjusted Level of Significance 0.029 Adjusted Chi Square Value (0.05) 13.35 48 Assuming Gamma UCL (use when n>=50)) 57.41 95% Adjusted Gamma UCL (use when n<50) 62.76 50 Degramma Distribution Shapiro Wilk Lognormal GOF Test	34												
Society Significance Significa	35					Detecte					ce Level		
38	36						_						
Sabata	37								stributed at 5	5% Significan	e Level		
40 Gamma Statistics	38		Detected data	appear	Gamma Dis	tributed at	5% Significar	nce Level					
Name	39												
Theta hat (MLE) 26.84 Theta star (bias corrected MLE) 33.75	40					Statistics							
Number N	41										0.973		
44 MLE Mean (bias corrected) 32.83 MLE Sd (bias corrected) 33.29 45 Approximate Chi Square Value (0.05) 13.35 46 Adjusted Level of Significance 0.029 Adjusted Chi Square Value 12.21 47 Assuming Gamma Distribution 49 95% Approximate Gamma UCL (use when n>=50)) 57.41 95% Adjusted Gamma UCL (use when n<50)	42							Theta	•	·			
Approximate Chi Square Value (0.05) 13.35 Adjusted Level of Significance 0.029 Adjusted Chi Square Value 12.21 Assuming Gamma Distribution Assuming Gamma Distribution 95% Approximate Gamma UCL (use when n>=50)) 57.41 95% Adjusted Gamma UCL (use when n<50) 62.76 Lognormal GOF Test Shapiro Wilk Test Statistic 0.933 Shapiro Wilk Lognormal GOF Test S% Shapiro Wilk Critical Value 0.859 Data appear Lognormal at 5% Significance Level Lilliefors Test Statistic 0.174 Lilliefors Lognormal GOF Test S% Lilliefors Critical Value 0.256 Data appear Lognormal at 5% Significance Level Data appear Lognormal at 5% Significance Level	43									·			
Approximate Chi Square Value (0.05) 13.35 Adjusted Level of Significance 0.029 Adjusted Chi Square Value 12.21 Assuming Gamma Distribution Assuming Gamma Distribution 57.41 95% Adjusted Gamma UCL (use when n<50) 62.76 Lognormal GOF Test Shapiro Wilk Test Statistic 0.933 Shapiro Wilk Lognormal GOF Test Shapiro Wilk Critical Value 0.859 Data appear Lognormal at 5% Significance Level Lilliefors Test Statistic 0.174 Lilliefors Lognormal GOF Test 55 S% Lilliefors Critical Value 0.256 Data appear Lognormal at 5% Significance Level Data appear Lognormal at 5% Significance Level	44	М	LE Mean (bias corr	rected)	32.83				MLE Sd (bia	as corrected)	33.29		
Adjusted Level of Significance 0.029 Adjusted Chi Square Value 12.21 Assuming Gamma Distribution Solution								Approximate	Chi Square	Value (0.05)	13.35		
Assuming Gamma Distribution 95% Approximate Gamma UCL (use when n>=50)) 57.41 95% Adjusted Gamma UCL (use when n<50) 62.76 50 51 Cognormal GOF Test 52 Shapiro Wilk Test Statistic 0.933 Shapiro Wilk Lognormal GOF Test 53 58 Shapiro Wilk Critical Value 0.859 Data appear Lognormal at 5% Significance Level 59 Lilliefors Test Statistic 0.174 Lilliefors Lognormal GOF Test 50 51 52 53 54 55 55 56 56 57 58 Lilliefors Critical Value 0.256 Data appear Lognormal at 5% Significance Level 58 59 50 50 50 50 50 50 50 50 50		Adjus	sted Level of Signif	icance	0.029			Ad	djusted Chi S	quare Value	12.21		
48Assuming Gamma Distribution4995% Approximate Gamma UCL (use when n>=50))57.4195% Adjusted Gamma UCL (use when n<50)													
95% Approximate Gamma UCL (use when n>=50)) 57.41 95% Adjusted Gamma UCL (use when n<50) 62.76 50 51				Ass	suming Gam	ma Distribu	tion						
Lognormal GOF Test Shapiro Wilk Test Statistic 0.933 Shapiro Wilk Lognormal GOF Test Shapiro Wilk Critical Value 0.859 Data appear Lognormal at 5% Significance Level Lilliefors Test Statistic 0.174 Lilliefors Lognormal GOF Test Shapiro Wilk Critical Value 0.859 Data appear Lognormal at 5% Significance Level Lilliefors Test Statistic 0.174 Lilliefors Lognormal GOF Test Shapiro Wilk Lognormal at 5% Significance Level Lilliefors Test Statistic 0.174 Significance Level Shapiro Wilk Lognormal GOF Test Shapiro Wilk Lognormal at 5% Significance Level		95% Approximate Gamma	a UCL (use when n	>=50))	57.41		95% Ad	justed Gamr	na UCL (use	when n<50)	62.76		
Shapiro Wilk Test Statistic 0.933 Shapiro Wilk Lognormal GOF Test													
Shapiro Wilk Test Statistic 0.933 Shapiro Wilk Lognormal GOF Test 53 5% Shapiro Wilk Critical Value 0.859 Data appear Lognormal at 5% Significance Level 54 Lilliefors Test Statistic 0.174 Lilliefors Lognormal GOF Test 55 5% Lilliefors Critical Value 0.256 Data appear Lognormal at 5% Significance Level 56 Data appear Lognormal at 5% Significance Level 57					Lognormal	GOF Test							
53 5% Shapiro Wilk Critical Value 0.859 Data appear Lognormal at 5% Significance Level 54 Lilliefors Test Statistic 0.174 Lilliefors Lognormal GOF Test 55 5% Lilliefors Critical Value 0.256 Data appear Lognormal at 5% Significance Level 56 Data appear Lognormal at 5% Significance Level 57		S	Shapiro Wilk Test S	tatistic			Shap	iro Wilk Log	normal GOF	Test			
Lilliefors Test Statistic 0.174 Lilliefors Lognormal GOF Test 55 5% Lilliefors Critical Value 0.256 Data appear Lognormal at 5% Significance Level 56 Data appear Lognormal at 5% Significance Level 57													
55 5% Lilliefors Critical Value 0.256 Data appear Lognormal at 5% Significance Level 56 Data appear Lognormal at 5% Significance Level 57								•	•				
Data appear Lognormal at 5% Significance Level 57		5											
57 Language 1 Challetin						at 5% Sianif							
Lauranna Charlanta			Data (_							
Lognormal Statistics					Lognormal	Statistics							
58 Lognormal Statistics	ხგ												

3.03 1.051 66.69 102.3
66.69
102.3
48.6
51.5
47.08
71.09
120.2